I’m on the Air – On Sirius XM Channel 111

Starting this Monday, March 9th 4-6pm Pacific Time I’ll be on the radio hosting the Bay Area Ventures program on Sirius XM radio Channel 111 – the Wharton Business Radio Channel.Untitled

Over this program I’ll be talking to entrepreneurs, financial experts and academic leaders in the tech and biotech industries. And if the past is prologue I guarantee you that this will be radio worth listening to.

On our first show, Monday March 9th 4-6pm Pacific Time join me, as I chat with Alexander Osterwalder – inventor of the Business Model Canvas, and Oren Jacob, ex-CTO of Pixar and now CEO of ToyTalk on Sirius XM Radio Channel 111.

Oren Jacob - CEO ToyTalk

Oren Jacob – CEO ToyTalk

Alex Osterwalder - Business Models

Alex Osterwalder – Business Models

On Monday’s show we’ll be talking about a range of entrepreneurship topics: what’s a Business Model Canvas, how to build startups efficiently, the 9 deadly sins of a startup, the life of a startup CEO, how large companies can innovate at startup speeds. But it won’t just be us talking; we’ll be taking your questions live and on the air by phone, email or Twitter.

On April 27th, on my next program, my guest will be Eric Ries the author of the Lean Startup. Future guests include Marc Pincus, founder of Zynga, and other interesting founders and investors.

Is there anyone you’d like to hear on the air on future shows? Any specific topics you’d like discussed? Leave me a comment.

Mark your calendar for 4-6pm Pacific Time on Sirius XM Radio Channel 111:

  • March 9th
  • April 27th
  • May 11th
  • June 29th
  • July 13th
  • Aug 24th in NY

Life Science Startups Rising in the UK

Stephen Chambers spent 22 years in some of the most innovative companies in life science as the director of gene expression and then as a co-founder of his own company. Today he runs SynbiCITE, the UK’s synthetic biology consortium of 56 industrial partners and 19 Academic institutions located at Imperial College in London.

Stephen and SynbiCITE, just launched the world’s first Lean LaunchPad for Synthetic Biology program. Here’s his story.

—-

Why did you come back?
This is the question I most often hear, having now returned to the UK after leaving 24 years ago to work in the US. The answer is simple. The reason I came back is the same reason I left – to be where life science startups are happening.abbey road

Hard to imagine now, but in the late ’80s the life sciences startup landscape in the UK was almost non-existent. One or two companies existed which at the time were described as startups, but in reality were government-backed small companies attempting, and ultimately failing, to execute business plans.

At that time for any life-scientist wanting to work in the commercial sector there were few, if any, jobs in the UK. Along with the rest of British industry, the pharmaceutical sector was under going massive re-organization and mergers creating much of today’s big pharma in the process. These where the Thatcher years: when we were told to  ‘get on your bike’ and many of us did.

I left the UK joining a newly formed startup, Vertex Pharmaceuticals in Cambridge, Massachusetts, as one of the founding scientists. There were few alternatives then, if you wanted to work in a startup you had to go to the US. Fortunately, Vertex became one of the most successful US pharma companies in recent history. But even if it hadn’t, in the rich life-science ecosystem around Cambridge and Boston, there are plenty of other opportunities. Or you could start your own company, which I did after Vertex.

So what has changed in the UK?
Probably the biggest change was the UK government’s recognition of the importance of synthetic biology. (Synthetic biology engineers biologically based chemicals, drugs and materials.) The government designated the field as one of the UK’s Eight Great Technologies (along with advanced materials, agri-science, big data, energy storage, regenerative medicine, robotics, and satellites) that the country would focus on. The UK invested ~ £150 million in synthetic biology research and training through the Research Councils and Innovate UK.

To focus the national synthetic biology effort the UK created SynbiCITE, as the public-private partnership responsible for taking synthetic biology from the lab bench into commercial products in the UK.

And this is what has drawn me back. Looking at the UK, I saw a hotbed of startup activity, especially among companies looking to exploit the latest developments in synthetic biology.

I jumped at the opportunity to be the CEO of SynbiCITE, where I can pursue my passion of working with scientists and entrepreneurs who want to create and build something spectacular in the UK.

The Foundry
SynbiCITE provides financial aid for Proof of Concept and collaborative research, and logistical support in the form of access to a state-of-the-art ‘Foundry’ for DNA synthesis, assembly and verification.

Often the limiting step in synthetic biology innovation is the generation of the prototype, the model or the data: the Foundry seeks to bridge the critical gap between ideation and physical product in synthetic biology. Think of it as a “maker-space” specifically designed to support the commercialization of synthetic biology allowing startups to prototype new biologically based chemicals, drugs and materials.

The Foundry accelerates the translation of synthetic biology research into the marketplace. Small and medium-sized companies, startups or virtual companies can use the Foundry as a remote laboratory. We provide automated end-to-end design, construction and validation of synthetic biologic components. It is the generation of these parts, devices and systems, and the diversity of products they can produce and the range of functions they perform, which is creating the enormous excitement around this technology.

Another change in the UK, is the growing acceptance that startups are the true engines of not only economic and job growth but also the medium by which innovation most efficiently takes place. While there are still universities in the UK that would rather not have to deal with messy, cash-strapped entrepreneurs and startups most are beginning to realize that licensing doesn’t create jobs, startups do.

Lean LaunchPad to Accelerate Commercialization
The goal of our Synthetic Biology consortium is to turn our world-class scientific research into commercial products. This is why we’re excited about offering the Lean LaunchPad at SynbiCITE. Our goal is to help would-be scientist/entrepreneurs translate their ideas and research in synthetic biology into the marketplace. We want to teach them how successful startups really get built – and do it with urgency.

If you can’t see the video click here

The goal is to provide them a route from coming up with an idea for a product, through generation of business model canvas via the Lean LaunchPad program and in parallel, harness the Foundry for the production of prototypes, models and data all the while providing evidence of commercial potential.

The program gives those involved direct hands-on experience of identifying a product that the customer really needs and is prepared to buy. I want the participants in the program to have the excitement of finding their first customer, shipping that first product and in doing so learn about all the other aspects of building a successful business.  The Lean LaunchPad does that it in 12 weeks.

Going forward this initial Lean LaunchPad cohort at SynbiCITE will be the first of many. The course is the most important of all the innovation programs we are providing.

This will be the first time in the UK, scientists in the field of synthetic biology have being given the unique opportunity to learn how to become would-be entrepreneurs, by getting out of the lab, talking to potential customers and partners, and identifying what’s needed to turn science into commercial products.

Lessons Learned

  • The UK has established a national effort in Synthetic Biology
  • The Lean LaunchPad is being used to rapidly turn science into commercial products

Getting out of the building…by staying in the building!

The landscape for how to turn life science and health care technologies into viable companies has changed more in the last 3 years than in the last 30. New approaches to translational medicine have emerged. Our Lean Launchpad® for Life Sciences is one of them. But a new class of life science/healthcare co-working and collaboration space is another.

———–

The National Institutes of Health recognizes that Life Science/Health Care commercialization has two components: the science/technology, and the business model. The Lean Launchpad® for Life Sciences (the I-Corps @ NIH) uses the Lean Startup Model to discover and validate the business model.

two parts to commericializationThe class provides Life Science/Health Care entrepreneurs with real world, hands-on learning on how to rapidly:

  • define clinical utility before spending millions of dollars
  • understand who their core and tertiary customers are, and the sales and marketing process required for initial clinical sales and downstream commercialization
  • assess intellectual property and regulatory risk before they design and build
  • know what data will be required by future partnerships/collaboration/purchases before doing the science
  • identify financing vehicles before you need them

This user/customer-centered approach is a huge step in the right direction in the life science/health care commercialization. However, one of the bottlenecks in actually doing Customer Discovery for medical devices/health care is testing how minimal viable products work in-context. Testing hypotheses with doctors, patients, payers, providers, purchasing departments, strategic partners is hard. It can involve traveling hundreds of miles and can consume months of time and loads of money. Scheduling time to look over a surgeon’s shoulder in an operating room is tough. Getting time to brainstorm with payers or experts in clinical trials is hard.

It would be great if there were a way to first test these hypotheses and minimal viable products in a realistic setting locally. Then after a first pass of validation, take them on the road and see if others agree.

A new life science/healthcare co-working and collaboration space
It looks like someone is actually pulling this together in a life science/healthcare co-working and collaboration space in Chicago called MATTER.

Co-working spaces seem to be evolving into the startup garages of the future. It’s a shared work environment (typically a floor of a building) where individuals (or small teams) rent space and work around other people but independently. Yet they share values and hopefully some synergy around topics of mutual interest (same customers, or technologies). Incubators are designed for teams with an idea. They add mentors and additional services and some offer free space in exchange for equity. Accelerators take teams with fairly focused ideas and offer a formal 3-4 month program of tutoring/mentoring with seed funding in exchange for equity.

The MATTER co-working space will have five unique things specifically for life science/healthcare companies:

  1. It’s focused exclusively on life science/health care (therapeutics, medical devices, diagnostics, digital health, health care IT, etc.)
  2. Key stakeholders in the broader healthcare ecosystem will be co-located under one roof: entrepreneurs, universities, established companies and strategic partners, providers, payers, hospitals, service providers, associations, advocacy groups, government and more.
  3. It will have a simulated procedure space that can be configured as an Operating Room, Emergency Room, Intensive Care Unit and other clinical/procedural settings. The space will include authentic lighting, equipment and other features that very closely resemble the look, sound and feel of these environments in the “real world”.
  4. It will have a clinician and patient studio configurable as a doctor’s office or a home care setting to simulate clinician and patient interactions. It will serve as a test bed for software, services and other technologies to improve the clinician/patient dynamic as well as improving workflows in the clinic.
  5. It will have a fabrication space where device startups can build minimum viable products and iterate on their designs while in the facility.

By building a co-working space that includes all of these stakeholders, MATTER allows startups (and companies) to get in front of customers and other members of the value chain first, before they leave the building.

The team at MATTER also realizes that facilities alone will not do the trick. In order to get the healthcare community to collaborate with each other to bring new ideas to market they will need some help to catalyze  the “co” part of co-working.

“The life sciences community is still warming-up to the value of customer development in the early stages of building new ventures”, says David Schonthal, MATTER Co-founder and Clinical Assistant Professor of entrepreneurship & innovation at the Kellogg School of Management. “Many of them aren’t yet clear on who their customer actually is – and as a result – what value they should be focused on creating. Essentially, through programming and content, we will need to teach many of our members the importance of understanding the needs of stakeholders and customers – we just aim to make it easier by bringing these people into the building.”

The procedure space and clinician and patient studio allow startups to test and demo medical devices, diagnostics, software and other technologies, with real clinicians, to validate hypotheses, their technologies, and discover the “unknown unknowns” that they wouldn’t learn until the product was used in a real clinical setting (meaning: after years of development and regulatory clearances).

But the real benefit for a Lean Startup is that unlike a traditional OR/ER, technologies/devices used in these spaces can be minimum viable products. They can be crude, non-sterile prototypes tested at any phase of their development (from sketch to machined parts), to answer any number of important questions that innovators might have about how, when, why and by whom a technology is used.

(Think of a startup building a diagnostic display designed for an operating room that discovered it was virtually unreadable and inaudible in the bright lights and loud sounds of a real operating room. Finding this out late in the development process can burn cash and time in a med tech company.)

MATTER is funded and supported by a broad range of private sector partners including established companies, providers, payers, service providers and others; as well as public sector support from the State of Illinois and the City of Chicago.

It Takes a Village
“This has been nearly a 4-year journey,” said Schonthal who prior to moving back to Chicago in 2011 had been working in healthcare venture capital in San Diego.

“One of the noticeable things about the San Diego health tech community is that it feels like a community. It has density,” he said. “People bump into each other, seek each other’s advice, make connections and collaborate on projects. In Chicago, despite having a lot of talent, companies and great research, we are a big, spread-out city. As a result we needed to design some of that density inside of MATTER so that serendipity can occur”.

Schonthal found that others in Chicago saw the vision. He enlisted the help of serial medical device entrepreneur Andrew Cittadine, biotech startup veteran Jeffery Aronin and Patrick Flavin and Steve Collens who was a major force behind the development of 1871 – Chicago’s digital co-working space. Together they recruited the support of the city, state and private industry who all agreed that frequent and early community collaboration to support young companies would be key to Chicago’s future in healthcare entrepreneurship.

Others Are Doing this As Well
MATTER is one of many organizations supporting life science/healthcare entrepreneurship across the country. In New York there’s Blueprint Health and Startup Health, in Denver there’s Stride and Princeton has Tiger Labs. Other incubators and accelerators in the health tech space include Health WildCatters in Dallas, RockHealth in Silicon Valley, Iron Yard in North Carolina, HealthBox Accelerator, Athena Health MDP in Boston and others. And probably the most important will be the Lean LaunchPad @ Life Science Angels class for early stage life science companies. Each of these has their own approach to supporting the creation of new ventures – but all are working to help young startups solve big problems.

Lessons Learned

  • Our knowledge of how to efficiently turn life science/health care technology into companies is rapidly increasing
  • Lean Methods are one such tool
  • Healthcare co-working and collaboration space is another

I-Corps at the NIH: Evidence-based Translational Medicine

If you’ve received this post in an email the embedded videos and powerpoint are best viewed on www.steveblank.com

We have learned a remarkable process that allow us to be highly focused, and we have learned a tool of trade we can now repeat. This has been of tremendous value to us.

Andrew Norris, Principal Investigator BCN Biosciences

Over the last three years the National Science Foundation I-Corps has taught over 700 teams of scientists how to commercialize their technology and how to fail less, increasing their odds for commercial success.

To see if this same curriculum would work for therapeutics, diagnostics, medical devices and digital health, we taught 26 teams at UCSF a life science version of the NSF curriculum. 110 researchers and clinicians, and Principal Investigators got out of the lab and hospital, and talked to 2,355 customers. (Details here)

For the last 10 weeks 19 teams in therapeutics, diagnostics and medical devices from the National Institutes of Health (from four of the largest institutes; NCINHBLI, NINDS, and NCATS) have gone through the I-Corps at NIH.

87 researchers and clinicians spoke to 2,120 customers, tested 695 hypotheses and pivoted 215 times. Every team spoke to over 100 customers.

Three Big Questions
The NIH teams weren’t just teams with ideas, they were fully formed companies with CEO’s and Principal Investigators who already had received a $150,000 grant from the NIH. With that SBIR-Phase 1 funding the teams were trying to establish the technical merit, feasibility, and commercial potential of their technology. Many will apply for a Phase II grant of up to $1 million to continue their R&D efforts.

Going into the class we had three questions:

  1. Could companies who were already pursuing a business model be convinced to revisit their key commercialization hypotheses – and iterate and pivot if needed?
  2. Was getting the Principal Investigators and CEO out of the building more effective than the traditional NIH model of bringing in outside consultants to do commercialization planning?
  3. Would our style of being relentlessly direct with senior scientists, who hadn’t had their work questioned in this fashion since their PhD orals, work with the NIH teams?

Evidence-based Translational Medicine
We’ve learned that information from 100 customers is just at the edge of having sufficient data to validate/invalidate a company’s business model hypotheses. As for whether you can/should push scientists past their comfort zone, the evidence is clear – there is no other program that gets teams anywhere close to talking to 100 customers. The reason? For entrepreneurs to get out of the building at this speed and scale is an unnatural act. It’s hard, there are lots of other demands on their time, etc. But we push and cajole hard, (our phrase is we’re relentlessly direct,) knowing that while they might find it uncomfortable the first three days of the class, they come out thanking us.

The experience is demanding but time and again we have seen I-Corps teams transform their business assumptions. This direct interaction with potential users and customers is essential to commercialize science (whether to license the technology or launch a startup.) This process can’t be outsourced. These teams saved years and millions of dollars for themselves, the NIH and the U.S. taxpayer. Evidence is now in-hand that with I-Corps@NIH the NIH has the most effective program for commercializing science.

Lessons Learned Day
Every week of this 10 week class, teams present a summary of what they learned from their customers interviews. For the final presentation each team created a two minute video about their 10-week journey and a 8-minute PowerPoint presentation to tell us where they started, what they learned, how they learned it, and where they’re going. This “Lessons Learned” presentation is much different than a traditional demo day. It gives us a sense of the learning, velocity and trajectory of the teams, rather than a demo day showing us how smart they are at a single point in time.

BCN Biosciences
This video from team BCN Biosciences describes what the intensity, urgency, velocity and trajectory of an I-Corps team felt like. Like a startup it’s relentless.

BCN is developing a drug that increases anti-cancer effect of radiation in lung cancer (and/or reduces normal tissue damage by at least 40%). They were certain their customers were Radiation Oncologists, that MOA data was needed, that they needed to have Phase 1 trial data to license their product, and needed >$5 million and 6 years. After 10 weeks and 100 interviews, they learned that these hypotheses were wrong.

If you can’t see the BCN Biosciences video click here

The I-Corps experience helped the BCN Bioscience team develop an entirely new set set of business model hypotheses – this time validated by customers and partners. The “money slides” for BCN Biosciences are slides 22 and 23.

If you can’t see the BCN Biosciences presentation click here

You Can’t Outsource Customer Discovery
What we hear time and again from the Principal Investigators is “I never would have known this” or “I wouldn’t have understood it if I hadn’t heard it myself.” Up until now the NIH model of commercialization treated a Principal Investigator as someone who can’t be bothered to get out of the building (let alone insist that it’s part of their job in commercialization.) In the 21st century using proxies to get out of the building is like using barbers as surgeons.

Clinacuity
While the Clinacuity video sounds like an ad for customer discovery, listen to what they said then look at their slides. This team really learned outside the building.


If you can’t see the Clinacuity video click here

Clinacuity’s technology automatically extracts data in real-time from clinical notes, (the narrative text documents in a Electronic Health Record,) and provides a summary in real time. Their diagrams of the healthcare customer segment in slides 15-18 were outstanding.

If you can’t see the Clinacuity presentation click here

GigaGen
The GigaGen team – making recombinant gamma globulin – holds the record for customer discovery – 163 customer interviews on multiple continents.

If you can’t see the GigaGen video click here

GigaGen’s learning on customer value proposition and who were the real stakeholders was a revelation. Their next-to-last slide on Activities, Resouces and Partners put the pieces together.

If you can’t see the GigaGen presentation click here

Affinity Therapeutics
Affinity came into class with a drug coated Arterial Venous Graft – graft narrowing is a big problem.

One of things we tell all the teams is that we’re not going to critique their clinical or biological hypotheses. Yet we know that by getting out of the building their interaction with customers might do just that. That’s what happened to Affinity.

If you can’t see the Affinity video click here

Affinity was a great example of a team that pivoted their MVP. They realized they might have a completely new product – Vascular wraps that can reduce graft infection.  See slides 17-23.

If you can’t see the Affinity presentation click here

Haro
Haro is making a drug for the treatment of high risk neuroblastoma, the most common extracranial cancer in infancy and childhood. On day 1 of the class I told the team, “Your presentation is different from the others – and not in a good way.”  That’s not how I described them in the final presentation.

If you can’t see the Haro video click here

After 120 interviews the Haro found that there are oncology organizations (NCI-funded clinical development partners) that will take Haro’s compound and develop it at their own expense and take it all the way into the clinic. This will save Haro tens of millions of dollars in development cost.  See slides 12 and 13.

If you can’t see the Haro presentation click here

Cardiax
Caridax is developing a neural stimulator to treat atrial fibrillation. Their video points out some of the common pitfalls in customer discovery. Great summary from Mark Bates, the Principal Investigator: “You don’t know what you don’t know. Scientific discovery is different than innovation. You as a prospective entrepreneur need this type of systematic vetting and analysis to know the difference.”

If you can’t see the Cardiax video click here

After 80 interviews they realized they were jumping to conclusions and imparting their bias into the process. Take a look at slides 8-11 and see their course correction.

If you can’t see the Cardiax presentation click here

The other 15 presentations were equally impressive. Each and every team stood up and delivered. And in ways that surprised themselves.

The Lean Startup approach (hypotheses testing outside the building,) was the first time clinicians and researchers understood that talking to customers didn’t require sales, marketing or an MBA – that they themselves could do a pretty good first pass. I-Corps at NIH just gave us more evidence that’s true.

The team videos and slides are on SlideShare here.

A Team Effort
This blog post may make it sound like there was no one else in the room but me and the teams. But nothing could be farther from the truth. The I-Corps@NIH teaching team was led by Edmund Pendleton. Allan May/Jonathan Fay taught medical devices, John Blaho/Bob Storey taught diagnostics and Karl Handelsman/Keith McGreggor taught therapeutics. Andre Marquis, Frank Rimalovski and Dean Chang provided additional expertise. Brandy Nagel was our tireless teaching assistant. Jerry Engel is the NSF I-Corps faculty director.

Special thanks to Paul Yock of Stanford Biodesign and Alexander Osterwalder for flying across the country/world to be part of the teaching team.

I created the I-Corps/Lean LaunchPad® syllabus/curriculum, and with guidance from Allan May, Karl Handelsman Abhas Gupta and Todd Morrill adapted it for Life Sciences/Health Care/Digital Health. The team from VentureWell provided the logistical support. The I-Corps program is run by the National Science Foundation (Babu Dasgupta, Don Millard and Anita LaSalle.) And of course none of this would be possible without the tremendous and enthusiastic support and encouragement of Michael Weingarten the director of the NIH/NCI SBIR program and his team.

Lessons Learned

  • The I-Corps/Lean LaunchPad curriculum works for therapeutics, diagnostics and device teams
  • Talking to 100 customers not only affected teams’ commercial hypotheses but also their biological and clinical assumptions
  • These teams saved years and millions of dollars for themselves, the NIH and the U.S. taxpayer
  • Evidence is now in-hand that the NIH has the most effective program for commercializing science
  • In the 21st century using proxies to get out of the building is like using barbers as surgeons

Why Translational Medicine Will Never be The Same

There have been 2 or 3 courses in my entire education that have changed
the way I think.  This is one of those
.
Hobart Harris Professor and Chief, Division of General Surgery at UCSF

For the past three years the National Science Foundation Innovation Corps has been teaching our nations best scientists how to build a Lean Startup.  Close to 400 teams in robotics, computer science, materials science, geoscience, etc. have learned how to use business models, get out of the building to test their hypotheses and minimum viable product.

However, business models in the Life Sciences are a bit more complicated than those in software, web/mobile or hardware. Startups in the Life Sciences (therapeutics, diagnostics, devices, digital health, etc.) also have to understand the complexities of reimbursement, regulation, intellectual property and clinical trials.

Last fall we prototyped an I-Corps class for life sciences at UCSF with 25 teams. Hobart Harris led one of the teams.

What Hobart learned and how he learned it is why we’re about to launch the I-Corps @ NIH on Oct 6th.

If you can’t see the video click here

Translational medicine will never be the same.

I-Corps @ NIH – Pivoting the Curriculum

We’ve pivoted our Lean LaunchPad / I-Corps curriculum. We’re changing the order in which we teach the business model canvas and customer development to better-fit therapeutics, diagnostics and medical devices.Udacity canvas and value prop

Over the last three years the Lean LaunchPad class has started to replace the last century’s “how to write a business plan” classes as the foundation for entrepreneurial education. The Lean LaunchPad class uses the three “Lean Startup” principles:

  • Alexander Osterwalders “business model canvas” to frame hypotheses
  • “Customer Development” to test the hypotheses outside the building and
  • “Agile Engineering” to have teams prototype, test, and iterate their idea while discovering if they have a profitable business model.

Teams talk to 10-15 customers a week and make a minimum of 100 customer visits. The Lean LaunchPad is now being taught in over 100 universities. Three years ago the class was adopted by the National Science Foundation and has become their standard for commercializing science. Today the National Institutes of Health announced their I-Corps @ NIH program.

The one constant in all versions of the Lean LaunchPad / I-Corps class has been the order in which we teach the business model canvas.

Value Propositions and Customer Segments are covered in weeks 1 and 2, emphasizing the search for problem/solution and then product/market fit. Next we teach Distribution Channels (how are you going to sell the product) and Customer Relationships (how do you Get/Keep/Grow customers) and Revenue Streams (what’s the Revenue Model strategy and pricing tactics.) Finally we move to the left side of the canvas to teach the supporting elements of Resources, Partners, Activities and Costs.

current teaching order

Teaching the class lectures in this order worked great, it helped the teams understand that the right-side of the canvas was where the action was. The left- hand side had the supporting elements of the business that you needed to test and validate, but only after you made sure the hypotheses on the right were correct.

This lecture order was embedded in the Udacity Lectures, the syllabi and educators guide I open-sourced. Hundreds of teams in the NSF, and my Stanford, Berkeley, Columbia, and UCSF classes learned to search for a repeatable and scalable business model in this way.

It’s consistency was the reason that the NSF was able to scale the I-Corps from 15 to 30 University sites.

So why change something that worked so well?

Rationale
Last fall at UCSF we taught 125 researchers and clinicians in therapeutics, diagnostics, medical devices and digital health in a Lean LaunchPad for Life Sciences class. While the teaching team made heroic efforts to adapt their lectures to our “standard” canvas teaching order, it was clear that for therapeutics, diagnostics and medical devices the order was wrong. Hypotheses about Intellectual Property, Reimbursement, Regulation and Clinical Trials found on the left side of canvas are as, or more important than those on the right side of the canvas.

I realized we were trying to conform to a lecture order optimized for web, mobile, hardware. We needed to cover Intellectual Property, Reimbursement, Regulation and Clinical Trials a month earlier in the class than in the current format.

The National Institutes of Health has adopted our class for its I-Corps @ NIH program starting this October. Most teams will be in therapeutics, diagnostics and medical devices. Therefore we’re going to teach the class in the following order:

1) value proposition, 2) customer segments, 3) activities, 4) resources, 5) partners, 6) channel, 7) customer relationships, 8) revenue/costs

LS Suggested Order simple

I-Corps @ NIH Lecture Order Details
Customer Segments change over time.  CROs or Payers may ultimately be a resource, a partner or a revenue source, but until you get them signed up they’re first a customer. Your potential exit partners are also a customer. And most importantly, who reimburses you is a customer. (You get an introduction to reimbursement early here, while the details are described later in the “Revenue” lecture.)

Activities are the key things you need to do to make the rest of the business model (value proposition, distribution channel, revenue) work. Activities cover clinical trials, FDA approvals, Freedom to Operate (IP, Licenses) software development, drug or device design, etc.

Activities are not the product/service described in the value prop, they are the unique expertise that the company needs to deliver the value proposition.  In this week we generally describe the business rationale of why you need these. The specifics of who they are and how to work with them are covered in the “Resource” and “Partners” lectures.

Resources – Once you establish what activities you need to do, the next question is, “how do these activities get accomplished?” I.e. what resources do I need to make the activities happen. The answer is what goes in the Resources box (and if necessary, the Partners box.) Resources may be CRO’s, CPT consultants, IP, Financial or Human resources (regardless of whether they’re consultants or employees.)

Partners are external resources necessary to execute the Activities. You’ve identified the “class of partner” in the Resources box. This lecture talks about specifics – who are they, what deals work with them, how to get them, how to work with them.

Customer Relationships is what we think of as traditional sales and marketing; assembling a SAB, getting the KOL’s, conferences, articles, etc.  Customer Relationships answers the question, “How will we create demand and drive it to our channel?”

Suggested Order

We think we now have a syllabus that will better fit a Life Science audience. Once the syllabus stops moving around we’ll open source it along with the educators guide this fall.

Lessons Learned

  • The Lean LaunchPad class has started to replace the last century’s “how to write a business plan” classes
  • The lecture order emphasizes testing the right-side of the canvas first
  • That works for almost all markets
  • However, for life sciences hypotheses about Intellectual Property, Reimbursement, Regulation and Clinical Trials are critical to test early
  • Therefore we created a more effective lecture order for Life Sciences

Why Lean May Save Your Life – The I-Corps @ NIH

Today the National Institutes of Health announced they are offering my Lean LaunchPad class (I-Corps @ NIH ) to commercialize Life Science.

There may come a day that one of these teams makes a drug, diagnostic or medical device that saves your life.

—-

Over the last two and a half years the National Science Foundation I-Corps has taught over 300 teams of scientists how to commercialize their technology and how to fail less, increasing their odds for commercial success.

After seeing the process work so well for scientists and engineers in the NSF, we hypothesized that we could increase productivity and stave the capital flight by helping Life Sciences startups build their companies more efficiently.

So last fall we taught 26 life science and health care teams at UCSF in therapeutics, diagnostics and medical devices. 110 researchers and clinicians, and Principal Investigators got out of the lab and hospital, and talked to 2,355 customers, tested 947 hypotheses and invalidated 423 of them. The class had 1,145 engagements with instructors and mentors.NIH I Corps logo

The results from the UCSF Lean LaunchPad Life Science class showed us that the future of commercialization in Life Sciences is Lean – it’s fast, it works and it’s unlike anything else ever done. It’s going to get research from the lab to the bedside cheaper and faster.

Translational Medicine
In life sciences the process of moving commercializing research –moving it from the lab bench to the bedside – is called Translational Medicine.

The traditional model of how to turn scientific discovery into a business has been:
1) make a substantive discovery, 2) write a business plan/grant application, 3) raise funding, 4) execute the plan, 5) reap the financial reward.

For example, in therapeutics the implicit assumption has been that the primary focus of the venture was to validate the biological and clinical hypotheses(i.e. What buttons does this molecule push in target cells and what happens when these buttons are pushed? What biological pathways respond?) and then when these pathways are impacted, why do we believe it will matter to patients and physicians?

We assumed that for commercial hypotheses (clinical utility, who the customer is, data and quality of data, how reimbursement works, what parts of the product are valuable, roles of partners, etc.) if enough knowledge was gathered through proxies or research a positive outcome could be precomputed. And that with sufficient planning successful commercialization was simply an execution problem. This process built a false sense of certainty, in an environment that is fundamentally uncertain.Current tran med

We now know the traditional translational medicine model of commercialization is wrong.

The reality is that as you validate the commercial hypotheses (i.e. clinical utility, customer, quality of data, reimbursement, what parts of the product are valuable, roles of CRO’s, and partners, etc.,) you make substantive changes to one or more parts of your initial business model, and this new data affects your biological and clinical hypotheses.

We believe that a much more efficient commercialization process recognizes that 1) there needs to be a separate, parallel path to validate the commercial hypotheses and 2) the answers to the key commercialization questions are outside the lab and cannot be done by proxies. The key members of the team CEO, CTO, Principal investigator, need to be actively engaged talking to customers, partners, regulators, etc.

outward facing

And that’s just what we’re doing at the National Institutes of Health.

Join the I-Corps @ NIH
Today the National Institutes of Health announced the I-Corps at NIH.

It’s a collaboration with the National Science Foundation (NSF) to develop NIH-specific version of the Innovation-Corps. (Having these two federal research organizations working together is in itself a big deal.)  We’re taking the class we taught at UCSF and creating an even better version for the NIH.  (I’ll open source the syllabus and teaching guide later this year.)

The National Cancer Institute SBIR Development Center, is leading the pilot, with participation from the SBIR & STTR Programs at the National Heart, Lung and Blood Institute, the National Institute of Neurological Disorders and Stroke, and the National Center for Advancing Translational Sciences.

NIH Uncle Sam smallThe class provides real world, hands-on learning on how to reduce commercialization risk in early stage therapeutics, diagnostics and device ventures. We do this by helping teams rapidly:

  • define clinical utility now, before spending millions of dollars
  • understand the core customers and the sales and marketing process required for initial clinical sales and downstream commercialization
  • assess intellectual property and regulatory risk before they design and build
  • gather data essential to customer partnerships/collaboration/purchases before doing the science
  • identify financing vehicles before you need them

Like my Stanford/Berkeley and NSF classes, the I-Corps @ NIH  is a nine-week course. It’s open to NIH SBIR/STTR Phase 1 grantees.

The class is team based. To participate grantees assemble three-member teams that include:

  • C-Level Corporate Officer: A high-level company executive with decision-making authority;
  • Industry Expert: An individual with a prior business development background in the target industry; and
  • Program Director/Principal Investigator (PD/PI): The assigned PD/PI on the SBIR/STTR Phase I award.

Space is limited to 25 of the best teams with NIH Phase 1 grants. Application are due by August 7th (details are here.)

If you’re attending the BIO Conference join our teaching team (me, Karl Handelsman, Todd Morrill and Alan May) at the NIH Booth Wednesday June 25th at 2pm for more details. Or sign up for the webinar on July 2nd here.

This class takes a village: Michael Weingarten and Andrew Kurtz at the NIH, the teaching team: Karl Handelsman, Todd Morrill and Alan May, Babu DasGupat and Don Millard at the NSF, Erik Lium and Stephanie Marrus at UCSF, Jerry Engel and Abhas Gupta, Errol Arkilic at M34 Capital and our secret supporters; Congressman Dan Lipinski and Tom Kalil and Doug Rand at the OSTP and tons more.

Lessons Learned

  • There needs to be a separate, parallel path to validate the commercial hypotheses
  • The answers to commercialization questions are outside the lab
  • They cannot be done by proxies
  • Commercial validation affects biological and clinical hypotheses

Listen to the blog post here: 
Download the post here

Follow

Get every new post delivered to your Inbox.

Join 185,016 other followers