I-Corps at the NIH: Evidence-based Translational Medicine

If you’ve received this post in an email the embedded videos and powerpoint are best viewed on www.steveblank.com

We have learned a remarkable process that allow us to be highly focused, and we have learned a tool of trade we can now repeat. This has been of tremendous value to us.

Andrew Norris, Principal Investigator BCN Biosciences

Over the last three years the National Science Foundation I-Corps has taught over 700 teams of scientists how to commercialize their technology and how to fail less, increasing their odds for commercial success.

To see if this same curriculum would work for therapeutics, diagnostics, medical devices and digital health, we taught 26 teams at UCSF a life science version of the NSF curriculum. 110 researchers and clinicians, and Principal Investigators got out of the lab and hospital, and talked to 2,355 customers. (Details here)

For the last 10 weeks 19 teams in therapeutics, diagnostics and medical devices from the National Institutes of Health (from four of the largest institutes; NCINHBLI, NINDS, and NCATS) have gone through the I-Corps at NIH.

87 researchers and clinicians spoke to 2,120 customers, tested 695 hypotheses and pivoted 215 times. Every team spoke to over 100 customers.

Three Big Questions
The NIH teams weren’t just teams with ideas, they were fully formed companies with CEO’s and Principal Investigators who already had received a $150,000 grant from the NIH. With that SBIR-Phase 1 funding the teams were trying to establish the technical merit, feasibility, and commercial potential of their technology. Many will apply for a Phase II grant of up to $1 million to continue their R&D efforts.

Going into the class we had three questions:

  1. Could companies who were already pursuing a business model be convinced to revisit their key commercialization hypotheses – and iterate and pivot if needed?
  2. Was getting the Principal Investigators and CEO out of the building more effective than the traditional NIH model of bringing in outside consultants to do commercialization planning?
  3. Would our style of being relentlessly direct with senior scientists, who hadn’t had their work questioned in this fashion since their PhD orals, work with the NIH teams?

Evidence-based Translational Medicine
We’ve learned that information from 100 customers is just at the edge of having sufficient data to validate/invalidate a company’s business model hypotheses. As for whether you can/should push scientists past their comfort zone, the evidence is clear – there is no other program that gets teams anywhere close to talking to 100 customers. The reason? For entrepreneurs to get out of the building at this speed and scale is an unnatural act. It’s hard, there are lots of other demands on their time, etc. But we push and cajole hard, (our phrase is we’re relentlessly direct,) knowing that while they might find it uncomfortable the first three days of the class, they come out thanking us.

The experience is demanding but time and again we have seen I-Corps teams transform their business assumptions. This direct interaction with potential users and customers is essential to commercialize science (whether to license the technology or launch a startup.) This process can’t be outsourced. These teams saved years and millions of dollars for themselves, the NIH and the U.S. taxpayer. Evidence is now in-hand that with I-Corps@NIH the NIH has the most effective program for commercializing science.

Lessons Learned Day
Every week of this 10 week class, teams present a summary of what they learned from their customers interviews. For the final presentation each team created a two minute video about their 10-week journey and a 8-minute PowerPoint presentation to tell us where they started, what they learned, how they learned it, and where they’re going. This “Lessons Learned” presentation is much different than a traditional demo day. It gives us a sense of the learning, velocity and trajectory of the teams, rather than a demo day showing us how smart they are at a single point in time.

BCN Biosciences
This video from team BCN Biosciences describes what the intensity, urgency, velocity and trajectory of an I-Corps team felt like. Like a startup it’s relentless.

BCN is developing a drug that increases anti-cancer effect of radiation in lung cancer (and/or reduces normal tissue damage by at least 40%). They were certain their customers were Radiation Oncologists, that MOA data was needed, that they needed to have Phase 1 trial data to license their product, and needed >$5 million and 6 years. After 10 weeks and 100 interviews, they learned that these hypotheses were wrong.

If you can’t see the BCN Biosciences video click here

The I-Corps experience helped the BCN Bioscience team develop an entirely new set set of business model hypotheses – this time validated by customers and partners. The “money slides” for BCN Biosciences are slides 22 and 23.

If you can’t see the BCN Biosciences presentation click here

You Can’t Outsource Customer Discovery
What we hear time and again from the Principal Investigators is “I never would have known this” or “I wouldn’t have understood it if I hadn’t heard it myself.” Up until now the NIH model of commercialization treated a Principal Investigator as someone who can’t be bothered to get out of the building (let alone insist that it’s part of their job in commercialization.) In the 21st century using proxies to get out of the building is like using barbers as surgeons.

Clinacuity
While the Clinacuity video sounds like an ad for customer discovery, listen to what they said then look at their slides. This team really learned outside the building.


If you can’t see the Clinacuity video click here

Clinacuity’s technology automatically extracts data in real-time from clinical notes, (the narrative text documents in a Electronic Health Record,) and provides a summary in real time. Their diagrams of the healthcare customer segment in slides 15-18 were outstanding.

If you can’t see the Clinacuity presentation click here

GigaGen
The GigaGen team – making recombinant gamma globulin – holds the record for customer discovery – 163 customer interviews on multiple continents.

If you can’t see the GigaGen video click here

GigaGen’s learning on customer value proposition and who were the real stakeholders was a revelation. Their next-to-last slide on Activities, Resouces and Partners put the pieces together.

If you can’t see the GigaGen presentation click here

Affinity Therapeutics
Affinity came into class with a drug coated Arterial Venous Graft – graft narrowing is a big problem.

One of things we tell all the teams is that we’re not going to critique their clinical or biological hypotheses. Yet we know that by getting out of the building their interaction with customers might do just that. That’s what happened to Affinity.

If you can’t see the Affinity video click here

Affinity was a great example of a team that pivoted their MVP. They realized they might have a completely new product – Vascular wraps that can reduce graft infection.  See slides 17-23.

If you can’t see the Affinity presentation click here

Haro
Haro is making a drug for the treatment of high risk neuroblastoma, the most common extracranial cancer in infancy and childhood. On day 1 of the class I told the team, “Your presentation is different from the others – and not in a good way.”  That’s not how I described them in the final presentation.

If you can’t see the Haro video click here

After 120 interviews the Haro found that there are oncology organizations (NCI-funded clinical development partners) that will take Haro’s compound and develop it at their own expense and take it all the way into the clinic. This will save Haro tens of millions of dollars in development cost.  See slides 12 and 13.

If you can’t see the Haro presentation click here

Cardiax
Caridax is developing a neural stimulator to treat atrial fibrillation. Their video points out some of the common pitfalls in customer discovery. Great summary from Mark Bates, the Principal Investigator: “You don’t know what you don’t know. Scientific discovery is different than innovation. You as a prospective entrepreneur need this type of systematic vetting and analysis to know the difference.”

If you can’t see the Cardiax video click here

After 80 interviews they realized they were jumping to conclusions and imparting their bias into the process. Take a look at slides 8-11 and see their course correction.

If you can’t see the Cardiax presentation click here

The other 15 presentations were equally impressive. Each and every team stood up and delivered. And in ways that surprised themselves.

The Lean Startup approach (hypotheses testing outside the building,) was the first time clinicians and researchers understood that talking to customers didn’t require sales, marketing or an MBA – that they themselves could do a pretty good first pass. I-Corps at NIH just gave us more evidence that’s true.

The team videos and slides are on SlideShare here.

A Team Effort
This blog post may make it sound like there was no one else in the room but me and the teams. But nothing could be farther from the truth. The I-Corps@NIH teaching team was led by Edmund Pendleton. Allan May/Jonathan Fay taught medical devices, John Blaho/Bob Storey taught diagnostics and Karl Handelsman/Keith McGreggor taught therapeutics. Andre Marquis, Frank Rimalovski and Dean Chang provided additional expertise. Brandy Nagel was our tireless teaching assistant. Jerry Engel is the NSF I-Corps faculty director.

Special thanks to Paul Yock of Stanford Biodesign and Alexander Osterwalder for flying across the country/world to be part of the teaching team.

I created the I-Corps/Lean LaunchPad® syllabus/curriculum, and with guidance from Allan May, Karl Handelsman Abhas Gupta and Todd Morrill adapted it for Life Sciences/Health Care/Digital Health. The team from VentureWell provided the logistical support. The I-Corps program is run by the National Science Foundation (Babu Dasgupta, Don Millard and Anita LaSalle.) And of course none of this would be possible without the tremendous and enthusiastic support and encouragement of Michael Weingarten the director of the NIH/NCI SBIR program and his team.

Lessons Learned

  • The I-Corps/Lean LaunchPad curriculum works for therapeutics, diagnostics and device teams
  • Talking to 100 customers not only affected teams’ commercial hypotheses but also their biological and clinical assumptions
  • These teams saved years and millions of dollars for themselves, the NIH and the U.S. taxpayer
  • Evidence is now in-hand that the NIH has the most effective program for commercializing science
  • In the 21st century using proxies to get out of the building is like using barbers as surgeons

Why Translational Medicine Will Never be The Same

There have been 2 or 3 courses in my entire education that have changed
the way I think.  This is one of those
.
Hobart Harris Professor and Chief, Division of General Surgery at UCSF

For the past three years the National Science Foundation Innovation Corps has been teaching our nations best scientists how to build a Lean Startup.  Close to 400 teams in robotics, computer science, materials science, geoscience, etc. have learned how to use business models, get out of the building to test their hypotheses and minimum viable product.

However, business models in the Life Sciences are a bit more complicated than those in software, web/mobile or hardware. Startups in the Life Sciences (therapeutics, diagnostics, devices, digital health, etc.) also have to understand the complexities of reimbursement, regulation, intellectual property and clinical trials.

Last fall we prototyped an I-Corps class for life sciences at UCSF with 25 teams. Hobart Harris led one of the teams.

What Hobart learned and how he learned it is why we’re about to launch the I-Corps @ NIH on Oct 6th.

If you can’t see the video click here

Translational medicine will never be the same.

I-Corps @ NIH – Pivoting the Curriculum

We’ve pivoted our Lean LaunchPad / I-Corps curriculum. We’re changing the order in which we teach the business model canvas and customer development to better-fit therapeutics, diagnostics and medical devices.Udacity canvas and value prop

Over the last three years the Lean LaunchPad class has started to replace the last century’s “how to write a business plan” classes as the foundation for entrepreneurial education. The Lean LaunchPad class uses the three “Lean Startup” principles:

  • Alexander Osterwalders “business model canvas” to frame hypotheses
  • “Customer Development” to test the hypotheses outside the building and
  • “Agile Engineering” to have teams prototype, test, and iterate their idea while discovering if they have a profitable business model.

Teams talk to 10-15 customers a week and make a minimum of 100 customer visits. The Lean LaunchPad is now being taught in over 100 universities. Three years ago the class was adopted by the National Science Foundation and has become their standard for commercializing science. Today the National Institutes of Health announced their I-Corps @ NIH program.

The one constant in all versions of the Lean LaunchPad / I-Corps class has been the order in which we teach the business model canvas.

Value Propositions and Customer Segments are covered in weeks 1 and 2, emphasizing the search for problem/solution and then product/market fit. Next we teach Distribution Channels (how are you going to sell the product) and Customer Relationships (how do you Get/Keep/Grow customers) and Revenue Streams (what’s the Revenue Model strategy and pricing tactics.) Finally we move to the left side of the canvas to teach the supporting elements of Resources, Partners, Activities and Costs.

current teaching order

Teaching the class lectures in this order worked great, it helped the teams understand that the right-side of the canvas was where the action was. The left- hand side had the supporting elements of the business that you needed to test and validate, but only after you made sure the hypotheses on the right were correct.

This lecture order was embedded in the Udacity Lectures, the syllabi and educators guide I open-sourced. Hundreds of teams in the NSF, and my Stanford, Berkeley, Columbia, and UCSF classes learned to search for a repeatable and scalable business model in this way.

It’s consistency was the reason that the NSF was able to scale the I-Corps from 15 to 30 University sites.

So why change something that worked so well?

Rationale
Last fall at UCSF we taught 125 researchers and clinicians in therapeutics, diagnostics, medical devices and digital health in a Lean LaunchPad for Life Sciences class. While the teaching team made heroic efforts to adapt their lectures to our “standard” canvas teaching order, it was clear that for therapeutics, diagnostics and medical devices the order was wrong. Hypotheses about Intellectual Property, Reimbursement, Regulation and Clinical Trials found on the left side of canvas are as, or more important than those on the right side of the canvas.

I realized we were trying to conform to a lecture order optimized for web, mobile, hardware. We needed to cover Intellectual Property, Reimbursement, Regulation and Clinical Trials a month earlier in the class than in the current format.

The National Institutes of Health has adopted our class for its I-Corps @ NIH program starting this October. Most teams will be in therapeutics, diagnostics and medical devices. Therefore we’re going to teach the class in the following order:

1) value proposition, 2) customer segments, 3) activities, 4) resources, 5) partners, 6) channel, 7) customer relationships, 8) revenue/costs

LS Suggested Order simple

I-Corps @ NIH Lecture Order Details
Customer Segments change over time.  CROs or Payers may ultimately be a resource, a partner or a revenue source, but until you get them signed up they’re first a customer. Your potential exit partners are also a customer. And most importantly, who reimburses you is a customer. (You get an introduction to reimbursement early here, while the details are described later in the “Revenue” lecture.)

Activities are the key things you need to do to make the rest of the business model (value proposition, distribution channel, revenue) work. Activities cover clinical trials, FDA approvals, Freedom to Operate (IP, Licenses) software development, drug or device design, etc.

Activities are not the product/service described in the value prop, they are the unique expertise that the company needs to deliver the value proposition.  In this week we generally describe the business rationale of why you need these. The specifics of who they are and how to work with them are covered in the “Resource” and “Partners” lectures.

Resources – Once you establish what activities you need to do, the next question is, “how do these activities get accomplished?” I.e. what resources do I need to make the activities happen. The answer is what goes in the Resources box (and if necessary, the Partners box.) Resources may be CRO’s, CPT consultants, IP, Financial or Human resources (regardless of whether they’re consultants or employees.)

Partners are external resources necessary to execute the Activities. You’ve identified the “class of partner” in the Resources box. This lecture talks about specifics – who are they, what deals work with them, how to get them, how to work with them.

Customer Relationships is what we think of as traditional sales and marketing; assembling a SAB, getting the KOL’s, conferences, articles, etc.  Customer Relationships answers the question, “How will we create demand and drive it to our channel?”

Suggested Order

We think we now have a syllabus that will better fit a Life Science audience. Once the syllabus stops moving around we’ll open source it along with the educators guide this fall.

Lessons Learned

  • The Lean LaunchPad class has started to replace the last century’s “how to write a business plan” classes
  • The lecture order emphasizes testing the right-side of the canvas first
  • That works for almost all markets
  • However, for life sciences hypotheses about Intellectual Property, Reimbursement, Regulation and Clinical Trials are critical to test early
  • Therefore we created a more effective lecture order for Life Sciences
[soundcloud url=”https://api.soundcloud.com/tracks/156404645″ params=”show_artwork=false” height=”66″ iframe=”true” /]

Why Lean May Save Your Life – The I-Corps @ NIH

Today the National Institutes of Health announced they are offering my Lean LaunchPad class (I-Corps @ NIH ) to commercialize Life Science.

There may come a day that one of these teams makes a drug, diagnostic or medical device that saves your life.

—-

Over the last two and a half years the National Science Foundation I-Corps has taught over 300 teams of scientists how to commercialize their technology and how to fail less, increasing their odds for commercial success.

After seeing the process work so well for scientists and engineers in the NSF, we hypothesized that we could increase productivity and stave the capital flight by helping Life Sciences startups build their companies more efficiently.

So last fall we taught 26 life science and health care teams at UCSF in therapeutics, diagnostics and medical devices. 110 researchers and clinicians, and Principal Investigators got out of the lab and hospital, and talked to 2,355 customers, tested 947 hypotheses and invalidated 423 of them. The class had 1,145 engagements with instructors and mentors.NIH I Corps logo

The results from the UCSF Lean LaunchPad Life Science class showed us that the future of commercialization in Life Sciences is Lean – it’s fast, it works and it’s unlike anything else ever done. It’s going to get research from the lab to the bedside cheaper and faster.

Translational Medicine
In life sciences the process of moving commercializing research –moving it from the lab bench to the bedside – is called Translational Medicine.

The traditional model of how to turn scientific discovery into a business has been:
1) make a substantive discovery, 2) write a business plan/grant application, 3) raise funding, 4) execute the plan, 5) reap the financial reward.

For example, in therapeutics the implicit assumption has been that the primary focus of the venture was to validate the biological and clinical hypotheses(i.e. What buttons does this molecule push in target cells and what happens when these buttons are pushed? What biological pathways respond?) and then when these pathways are impacted, why do we believe it will matter to patients and physicians?

We assumed that for commercial hypotheses (clinical utility, who the customer is, data and quality of data, how reimbursement works, what parts of the product are valuable, roles of partners, etc.) if enough knowledge was gathered through proxies or research a positive outcome could be precomputed. And that with sufficient planning successful commercialization was simply an execution problem. This process built a false sense of certainty, in an environment that is fundamentally uncertain.Current tran med

We now know the traditional translational medicine model of commercialization is wrong.

The reality is that as you validate the commercial hypotheses (i.e. clinical utility, customer, quality of data, reimbursement, what parts of the product are valuable, roles of CRO’s, and partners, etc.,) you make substantive changes to one or more parts of your initial business model, and this new data affects your biological and clinical hypotheses.

We believe that a much more efficient commercialization process recognizes that 1) there needs to be a separate, parallel path to validate the commercial hypotheses and 2) the answers to the key commercialization questions are outside the lab and cannot be done by proxies. The key members of the team CEO, CTO, Principal investigator, need to be actively engaged talking to customers, partners, regulators, etc.

outward facing

And that’s just what we’re doing at the National Institutes of Health.

Join the I-Corps @ NIH
Today the National Institutes of Health announced the I-Corps at NIH.

It’s a collaboration with the National Science Foundation (NSF) to develop NIH-specific version of the Innovation-Corps. (Having these two federal research organizations working together is in itself a big deal.)  We’re taking the class we taught at UCSF and creating an even better version for the NIH.  (I’ll open source the syllabus and teaching guide later this year.)

The National Cancer Institute SBIR Development Center, is leading the pilot, with participation from the SBIR & STTR Programs at the National Heart, Lung and Blood Institute, the National Institute of Neurological Disorders and Stroke, and the National Center for Advancing Translational Sciences.

NIH Uncle Sam smallThe class provides real world, hands-on learning on how to reduce commercialization risk in early stage therapeutics, diagnostics and device ventures. We do this by helping teams rapidly:

  • define clinical utility now, before spending millions of dollars
  • understand the core customers and the sales and marketing process required for initial clinical sales and downstream commercialization
  • assess intellectual property and regulatory risk before they design and build
  • gather data essential to customer partnerships/collaboration/purchases before doing the science
  • identify financing vehicles before you need them

Like my Stanford/Berkeley and NSF classes, the I-Corps @ NIH  is a nine-week course. It’s open to NIH SBIR/STTR Phase 1 grantees.

The class is team based. To participate grantees assemble three-member teams that include:

  • C-Level Corporate Officer: A high-level company executive with decision-making authority;
  • Industry Expert: An individual with a prior business development background in the target industry; and
  • Program Director/Principal Investigator (PD/PI): The assigned PD/PI on the SBIR/STTR Phase I award.

Space is limited to 25 of the best teams with NIH Phase 1 grants. Application are due by August 7th (details are here.)

If you’re attending the BIO Conference join our teaching team (me, Karl Handelsman, Todd Morrill and Alan May) at the NIH Booth Wednesday June 25th at 2pm for more details. Or sign up for the webinar on July 2nd here.

This class takes a village: Michael Weingarten and Andrew Kurtz at the NIH, the teaching team: Karl Handelsman, Todd Morrill and Alan May, Babu DasGupat and Don Millard at the NSF, Erik Lium and Stephanie Marrus at UCSF, Jerry Engel and Abhas Gupta, Errol Arkilic at M34 Capital and our secret supporters; Congressman Dan Lipinski and Tom Kalil and Doug Rand at the OSTP and tons more.

Lessons Learned

  • There needs to be a separate, parallel path to validate the commercial hypotheses
  • The answers to commercialization questions are outside the lab
  • They cannot be done by proxies
  • Commercial validation affects biological and clinical hypotheses

Listen to the blog post here

Is This Startup Ready For Investment?

Since 2005 startup accelerators have provided cohorts of startups with mentoring, pitch practice and product focus. However, accelerator Demo Days are a combination of graduation ceremony and pitch contest, with the uncomfortable feel of a swimsuit competition. Other than “I’ll know it when I see it”, there’s no formal way for an investor attending Demo Day to assess project maturity or quantify risks. Other than measuring engineering progress, there’s no standard language to communicate progress.

Corporations running internal incubators face many of the same selection issues as startup investors, plus they must grapple with the issues of integrating new ideas into existing P&L-driven functions or business units.

What’s been missing for everyone is:

  • a common language for investors to communicate objectives to startups
  • a language corporate innovation groups can use to communicate to business units and finance
  • data that investors, accelerators and incubators can use to inform selection

While it doesn’t eliminate great investor judgment, pattern recognition skills and mentoring, we’ve developed an Investment Readiness Level tool that fills in these missing pieces.

—-

Investment Readiness Level (IRL) for Corporations and Investors
The startups in our Lean LaunchPad classes and the NSF I-Corps incubator use LaunchPad Central to collect a continuous stream of data across all the teams. Over 10 weeks each team gets out of the building talking to 100 customers to test their hypotheses across all 9 boxes in the business model canvas.

We track each team’s progress as they test their business model hypotheses. We collect the complete narrative of what they discovered talking to customers as well as aggregate interviews, hypotheses to test, invalidated hypotheses and mentor and instructor engagements. This data gives innovation managers and investors a feel for the evidence and trajectory of the cohort as a whole and a top-level view of each teams progress. The software rolls all the data into an Investment Readiness Level score.

(Take a quick read of the post on the Investment Readiness Level – it’s short. Or watch the video here.)

The Power of the Investment Readiness Level: Different Metrics for Different Industry Segments
Recently we ran a Lean LaunchPad for Life Sciences class with 26 teams of clinicians and researchers at UCSF.  The teams developed businesses in 4 different areas– therapeutics, diagnostics, medical devices and digital health.  To understand the power of this tool, look at how the VC overseeing each market segment modified the Investment Readiness Level so that it reflected metrics relevant to their particular industry.

Medical Devices
Allan May of Life Science Angels modified the standard Investment Readiness Level to include metrics that were specific for medical device startups. These included; identification of a compelling clinical need, large enough market, intellectual property, regulatory issues, and reimbursement, and whether there was a plausible exit.

In the pictures below, note that all the thermometers are visual proxies for the more detailed evaluation criteria that lie behind them.

Device IRL

Investment Readiness Level for Medical Devices

You can watch the entire presentation here

Therapeutics
Karl Handelsman of CMEA Capital modified the standard Investment Readiness Level (IRL) for teams developing therapeutics to include identifying clinical problems, and agreeing on a timeline to pre-clinical and clinical data, cost and value of data points, what quality data to deliver to a company, and building a Key Opinion Leader (KOL) network. The heart of the therapeutics IRL also required “Proof of relevance” – was there a path to revenues fully articulated, an operational plan defined. Finally, did the team understand the key therapeutic liabilities, have data proving on-target activity and evidence of a therapeutic effect.

Therapeutics IRL

You can see the entire presentation here

Digital Health
For teams developing Digital Health solutions, Abhas Gupta of MDV noted that the Investment Readiness Level was closest to the standard web/mobile/cloud model with the addition of reimbursement and technical validation.

Digital Health

Diagnostics
Todd Morrill wanted teams developing Diagnostics to have a reimbursement strategy fully documented, the necessary IP in place, regulation and technical validation (clinical trial) regime understood and described and the cost structure and financing needs well documented.

Diagnostics IRL

You can see the entire presentation here

For their final presentations, each team explained how they tested and validated their business model (value proposition, customer segment, channel, customer relationships, revenue, costs, activities, resources and partners.) But they also scored themselves using the Investment Readiness Level criteria for their  market. After the teams reported the results of their self-evaluation, the  VC’s then told them how they actually scored.  We were fascinated to see that the team scores and the VC scores were almost the same.

Lessons Learned

  • The Investment Readiness Level provides a “how are we doing” set of metrics
  • It also creates a common language and metrics that investors, corporate innovation groups and entrepreneurs can share
  • It’s flexible enough to be modified for industry-specific business models
  • It’s part of a much larger suite of tools for those who manage corporate innovation, accelerators and incubators

Listen to the blog post here [audio http://traffic.libsyn.com/albedrio/steveblank_hplewis_140225_FULL.mp3]

Download the podcast here

Lessons Learned in Diagnostics

This post is part of our series on the National Science Foundation I-Corps Lean LaunchPad class in Life Science and Health Care at UCSF. Doctors, researchers and Principal Investigators in this class got out of the lab and hospital talked to 2,355 customers, tested 947 hypotheses and invalidated 423 of them. The class had 1,145 engagements with instructors and mentors. (We kept track of all this data by instrumenting the teams with LaunchPad Central software.)

Mira Medicine is one of the 26 teams in the class. The team members are:
  • Pierre-Antoine Gourraud – PhD, MPH UCSF neuroscientist and c0-leader of the MS BioScreen project
  • Jason Crane – PhD UCSF Manager Scientific Software Development
  • Raphaelle Loren – Managing Director – Health Practice at the Innovation Management Institute

Todd Morrill was the diagnostics cohort instructor. Matt Cooper CEO of Carmenta BioSciences was the Mira Medicine team mentor.

Multiple Sclerosis – MS
Multiple Sclerosis – MS – is an immune system disease that attacks the myelin, the fatty sheath that surrounds and protects nerve fibers of the central nervous system (brain, spinal cord, and optic nerve). T-cells, (a type of white blood cell in the immune system,) become sensitized to myelin and cross the blood-brain barrier into the central nervous system (CNS). Once in the CNS, these T-cells injure myelin, and secrete chemicals that damage nerve fibers (axons) and recruit more damaging immune cells to the site of inflammation. multiple sclerosis and therapeutic targets

There are currently ten FDA approved MS medications for use in relapsing forms of MS. None of these drugs is a cure, and no drug is approved to treat the type of MS that shows steady progression at onset. MS disease management decisions are complex and requires a patients neurologist to figure out what drugs to use.

Mira Medicine and Multiple Sclerosis
The team came to class with the thought of commercializing the UCSF Multiple Sclerosis BioScreen Project a Precision Medicine application that integrates a patients medical records with the latest population-based data from hundreds of other Multiple Sclerosis patients, (including their 3D MRI scans,) and using predictive algorithms makes it possible to chart a unique course of treatment for each patient. (Mira Medicine team member Pierre-Antoine Gourraud was the project co-leader.) MS BioScreen

Mira wanted to commercialize the UCSF Multiple Sclerosis Bioscreen project and to add additional neurological diseases which require multiple types of data  (including biomarkers, clinical, and imaging). They wanted to help medical centers and large providers assess disease progression to guide therapeutic decision-making.  Over the course of the class Mira Medicine team spoke to over 80 customers, partners and payers.

Here’s their 2 minute video summary

If you can’t see the video above, click here.

Then reality hit. First, the team found that their Multiple Sclerosis Bioscreen application (which they used as their MVP) was just a “nice-to-have”, not a “must-have”. In fact, the “must have features” were their future predictive algorithms. Next, they found that if their tool can enable a diagnosis, (even without claiming it could) then it was likely that the FDA would require a  510(k) medical device clearance. Then they found to get reimbursed they need a CPT code (and they had to decide whether to code stack – using multiple codes for “one” diagnosis, and thereby getting multiple reimbursements for one test. (The rules have changed so that code stacking is hard or impossible), Or get a new CPT code, or use miscellaneous code.) To get a new CPT and a 510(k) they would have to perform a some sort of clinical study. At a minimum a 1-year prospective study (a study to see if the neurologists using the application had patients with a better outcome then those who didn’t have access to the app). Getting approval to use an existing (aka old) CPT code means showing equivalence to an existing dx process or test, and the requirements are code-specific. Finally, to get access to data sources of other MS patients they would need to have HIPPA Business Associate Agreement.

Watch their Lessons Learned video below and find out how they pivoted and what happened.

If you can’t see the video above click here

Look at their Lesson Learned slides below If you can’t see the presentation above, click here

Lessons Learned

  • Researchers and PI’s come in believing “My science/project/data are so good that people will immediately see the value and be willing to pay for it.  It will “sell itself”.
  • A business is much more than just good science: it is about customers seeing value and being willing to pay and proper validation and reimbursement coding and
  • A successful business is the sum (and integration!) of all the parts of the business model canvas.
    • It includes reimbursement, regulation, IP, validation, channel access, etc.

Listen to the blog post here [audio http://traffic.libsyn.com/albedrio/steveblank_hplewis_140102_FULL.mp3]

Download the podcast here

Lessons Learned in Therapeutics

This post is part of our series on the National Science Foundation I-Corps Lean LaunchPad class in Life Science and Health Care at UCSF. Doctors, researchers and Principal Investigators in this class got out of the lab and hospital talked to 2,355 customers, tested 947 hypotheses and invalidated 423 of them. The class had 1,145 engagements with instructors and mentors. (We kept track of all this data by instrumenting the teams with LaunchPad Central software.)

We are redefining how translational medicine is practiced.

Traditional view of translational medicineWe’ve learned that translational medicine is not just about the science.

More on this in future blog posts.

Lean view of translational medicine

Vitruvian Therapeutics is one of the 26 teams in the class. The team members are:
  • Dr. Hobart Harris  Chief of  General Surgery, Vice-Chair of the Department of Surgery, and a Professor of Surgery at  UCSF.
  • Dr. David Young,  Professor of Plastic Surgery at UCSF. His area of expertise includes wound healing, microsurgery, and reconstruction after burns and trauma. 
  • Cindy Chang is a Enzymologist investigating novel enzymes involved in biofuel and chemical synthesis in microbes at LS9

Karl Handelsman was the therapeutics cohort instructor. Julie Cherrington CEO of Pathway Therapeutics was the team mentor.

Vitruvian Therapeutics is trying to solve the Incisional hernia problem. An incisional hernia happens in open abdominal surgery when the area of the wound doesnt heal properly and bulges outward. This requires a second operation to fix the hernia.Ventral Herniaincisional hernia

Hobart Harris’s insight was what was needed wasn’t one more new surgical technique or device to repair the hernias, but something to prevent the hernia from occurring in the first place. Vitruvian Therapeutics first product, MyoSeal, does just that. It promotes wound repair via biocompatible microparticles plus a fibrin tissue sealant. So far in 300 rats it’s been shown to prevent incisional hernias through enhanced wound healing.

Here’s their 2 minute video summary

If you can’t see the video above, click here.

Two weeks into the class and interviews with 14 of their potential customers (surgeons) reality intruded on their vision of how the world should work. We happened to catch that moment in class in this 90 second clip.

Watch  and find out how talking to just the first 14 customers in the Lean LaunchPad class saved Hobart Harris and the Vitruvian Therapeutics team years.

If you can’t see the clip above click here.

The Vitruvian Therapeutics Lessons Learned Presentation is a real-eyeopener. Given that this product could solve the incisional hernia problem, Hobart and his team naturally assumed that insurance companies would embrace this and their fellow surgeons viewed the problem as they did and would leap at using the product. Boy were they in for a surprise. After talking to 74 surgeons, insurance companies and partners appeared that no one – insurance companies or surgeons – owned the problem. Listen to their conclusions 8-weeks after the first video.

Watch the video and find out how they pivoted and what happened.

Don’t miss Karl Handelsman comments on their Investment Readiness Level at the end. Vitruvian is a good example of a great early stage therapeutics idea with animal data missing and many key components of the business model still needed to verify.

If you can’t see the video above click here

Look at their Lesson Learned slides below

If you can’t see the presentation above, click here

Market Type
During the class the Vitruvian Therapeutics class struggled with the classic question of visionaries: are we creating a New Market (one which doesn’t exist and has no customers)? In Vitruvian’s case preventive measures to stop incisional hernias before they happen.  Or should we position our product as one that’s Resegmenting an Existing Market? i.e. reducing leakage rates.  Or is there a way to get proof that the vision of the New Market is the correct path.

When Hobart Harris of Viturvian asked, “… what if you’re a visionary, and no one but you sees the right solution to a problem” we had a great in-class dialog. Karl Handelsman‘s comments at 3:15 and 4:16 and Allan May at 4:35 were incredibly valuable. See the video below for the dialog.

If you can’t see the video above, click here

Further Reading

Lessons Learned

  • Principal Investigators, scientists and engineers can’t figure out commercialization sitting in their labs
  • You can’t outsource commercialization to a proxy (consultants, market researchers, etc.)
  • Experiential Learning is integral to commercialization
  • You may be the smartest person in your lab, but your are not smarter than the collective intelligence of your potential customers, partners, payers and regulators

Listen to the blog post here [audio http://traffic.libsyn.com/albedrio/steveblank_hplewis_131226_FULL.mp3]

Download the podcast here

Lessons Learned in Medical Devices

This post is part of our series on the National Science Foundation I-Corps Lean LaunchPad class in Life Science and Health Care at UCSF. Doctors, researchers and Principal Investigators in this class got out of the lab and hospital talked to 2,355 customers, tested 947 hypotheses and invalidated 423 of them.  The class had 1,145 engagements with instructors and mentors. (We kept track of all this data by instrumenting the teams with LaunchPad Central software.)

We are redefining how translational medicine is practiced. It’s Lean, it’s fast, it works and it’s unlike anything else ever done.

—–

Sometimes teams win when they fail.

Knox Medical Devices was building a Spacer which contained a remote monitoring device to allow for intervention for children with Asthma . (A Spacer is a tube between a container of Asthma medicine (in an inhaler) and a patient’s mouth.The tube turns the Asthma medicine into an aerosol.)Asthma

Knox’s spacer had sensors for basic spirometry measurements (the amount of air and how fast it’s inhaled and exhaled) to see how well the lung is working. It also had a Nitrous Oxide sensor to provide data on whether the lungs airways are inflamed, an inhaler attachment and a GPS tracking device.

Knox SpacerThe Spacer hardware was paired with data analysis software for tracking multiple facets of asthma patients.

The Knox team members are:

Allan May founder of Life Science Angels was the Medical Device cohort instructor. Alex DiNello CEO at Relievant Medsystems was their mentor.

The Knox team was a great mix of hands-on device engineers and business development. They used agile engineering perfectly to continually test variants of their Minimum Viable Product (MVP’s) in front of customers often and early to get immediate feedback.

Knox was relentless about understanding whether their device was a business or whether it was technology in search of a market. In 10 weeks they had face-to-face meetings with 117 customers, tested 33 hypotheses, invalidated 19 of them and 53 instructor and mentor interactions.

Here’s Knox Medical’s 2 minute video summary

If you can’t see the video above, click here

Knox was a great example of having a technology in search of a customer. The initial hypothesis of who would pay for the device – parents of children with asthma – was wrong and resulted in Knox’s first pivot in week 4. By week 6 they had discovered that; 1) Peak Flow Meters are not as heavily prescribed as they thought, 2) Insurance company reimbursement is necessary for anything upwards of $15, 3) Nitrous Oxide testing isn’t currently used to measure asthma conditions.

After the pivot they the found that the most likely users of their device would be low income Asthma patients who are treated at Asthma clinics funded by federal, state or county dollars. These clinics reduce hospitalization but Insurers weren’t paying to cover clinic costs nor would they cover the use of the Knox device. The irony was that those who most needed the Knox device were those who could least afford it and wouldn’t be able get it.

Watch their Lesson Learned presentation below. Listen to the comments from Allan May the Device instructor at the end.

If you can’t see the video above, click here

In the end Knox, like a lot of startups in Life Science and Health Care, discovered that they had a multi-sided market.  They realized late in the class the patients (and their families) were not their payers – their payers were the insurance companies (and the patients were the users.)  If they didn’t have a compelling value proposition for the insurers (cost savings, increased revenue, etc.) it didn’t matter how great the technology was or how much the patients would benefit.

The Knox Medical Device presentation slides are below. Don’t miss the evolution of their business model canvas in the appendix. It’s a film strip of the entrepreneurial process in action.

If you can’t see the slides above, click here

Knox is a great example of how the Lean LaunchPad allows teams to continually test hypotheses and fail fast and inexpensively. They learned a ton. And saved millions.

Lessons Learned

  • In medical devices, understanding reimbursement, regulation and IP is critical
  • Sometimes teams win when they fail
Download the podcast here

Lessons Learned in Digital Health

This post is part of our series on the National Science Foundation I-Corps Lean LaunchPad class in Life Science and Health Care at UCSF.

Our Lean LaunchPad for Life Science class talked to 2,355 customers, tested 947 hypotheses and invalidated 423 of them.  They had 1,145 engagements with instructors and mentors. (We kept track of all this data by instrumenting the teams with LaunchPad Central software.)

This post is one of a series of the “Lessons Learned” presentations and videos from our class.

Sometimes a startup results from a technical innovation. Or from a change in regulation, declining costs, changes in consumers needs or an insight about customer needs. Resultcare, one of the 26 teams in the class started when a resident in clinical medicine at UCSF watched her mother die of breast cancer and her husband get critically injured.

The team members are:

  • Dr. Mima Geere  Clinical Medicine at UCSF.
  • Dr. Arman Jahangiri HHMI medical fellow at UCSF, Department of Neurological Surgery
  • Dr. Brandi Castro in Neuroscience at UCSF
  • Mitchell Geere product design
  • Kristen Bova MBA, MHS
  • Nima Anari PhD in Data Science

Abhas Gupta was the Digital Health cohort instructor. Richard Caro was their mentor.

ResultCare is a mobile app that helps physicians take the guesswork out of medicine. It enables physicians to practice precision medicine while reducing costs.precision medicine

Here’s Resultcare’s 2 minute video summary

If you can’t see the video above, click here.

Watch their Lesson Learned presentation below. The first few minutes of the talk is quite personal and describes the experiences that motivated Dr. Geere to address this problem.

If you can’t see the video above, click here

The Resultcare presentation slides are below.

If you can’t see the presentation above, click here

Listen to the blog post here [audio http://traffic.libsyn.com/albedrio/steveblank_clearshore_131219.mp3]

Download the podcast here

We’ve seen the Future of Translational Medicine and it’s Disruptive

A team of 110 researchers and clinicians, in therapeutics, diagnostics, devices and digital health in 25 teams at UCSF, has just shown us the future of translational medicine.  It’s Lean, it’s fast, it works and it’s unlike anything else ever done.

It’s going to get research from the lab to the bedside cheaper and faster.

Welcome to the Lean LaunchPad for Life Sciences and Healthcare (part of the National Science Foundation I-Corps).

This post is part of our series on the Lean Startup in Life Science and Health Care.

——–

Our class talked to 2,355 customers, tested 947 hypotheses and invalidated 423 of them.  They had 1,145 engagements with instructors and mentors. (We kept track of all this data by instrumenting the teams with LaunchPad Central software.)

In a packed auditorium in Genentech Hall at UCSF, the teams summarized what they learned after 10 weeks of getting out of the building. This was our version of Demo Day – we call it “Lessons Learned” Day. Each team make two presentations:

  • 2 minutes YouTube Video: General story of what they learned from the class
  • 8 minute Lessons Learned Presentation: Very specific story about what they learned in 10 weeks about their business model

In the next few posts I’m going to share a few of the final “Lessons Learned” presentations and videos and then summarize lessons learned from the teaching team.

Magnamosis
Magnamosis is a medical device company that has a new way to create a magnetic compression anastomosis (a surgical connection between two tubular structures like the bowel) with improved outcomes.

anastomosis

Team Members were: Michael Harrison (the father of fetal surgery), Michael Danty, Dillon Kwiat, Elisabeth Leeflang, Matt Clark.  Jay Watkins was the team mentor. Allan May and George Taylor were the medical device cohort instructors.

Their initial idea was that making an anastomosis that’s better, faster and cheaper will have surgeons fighting to the death to get a hold of their device.  magnamosisThey quickly found out that wasn’t the case.  Leak rates turned out to a bigger issue with surgeons and a much larger market.

Here’s their 2 minute video summary

If you can’t see the video above, click here.

Watch their Lessons Learned video below and see how a team of doctors learned about product/market fit, channels and pricing.

If you can’t see the video above, click here

Their slide deck is below. Don’t miss the evolution of their business model in the Appendix.

If you can’t see the presentation above, click here

The best summary of why Scientists, Engineers and Principal Investigators need to get out of the building was summarized by Dr. Harrison below. After working on his product for a decade listen to how 10 weeks of the Lean LaunchPad class radically changed his value proposition and business model.

If you can’t see the video above, click here.

For further reading:

Listen to the blog post here [audio http://traffic.libsyn.com/albedrio/steveblank_clearshore_131217.mp3]

Download the podcast here

%d bloggers like this: