Save the Date! the 5th Lean Innovation Educators Summit

SAVE THE DATE for the 5th Lean Innovation Educators Summit on The Role of Educators and the University in Building Sustainable and Innovative Ecosystems 
February 3rd, 2022 from 1 to 4pm EST, 10 to 1pm PST 

Join me, Jerry Engel, Pete Newell, and Steve Weinstein as well as educators from universities around the world for this upcoming event.  

The Summit brings together leading entrepreneurship educators who are putting Lean Innovation to work in their classrooms, accelerators, and students’ ventures. This is the fifth edition of this semi-annual gathering, a supportive peer community of educators, and we’ll meet to discuss how we adapt to meet the challenges of the current tumultuous environment. The upcoming session will focus on the role of the university, and other important organizations in our ecosystems, in supporting our critical mission of preparing the next generation of entrepreneurs and innovators. 

Why?
The role of entrepreneurs and the ecosystem that supports them is even more important as the pace of change accelerates. The challenges of the pandemic and global warming highlight the importance of capturing value from technology and the innovators who create novel and effective solutions.  How do we as entrepreneurship and innovation educators best prepare the next generation?  What is the role of the university in helping us do this?

What?
Our key note speaker is Dr. Richard Lyons of UC Berkeley – the University’s first ever Chief Innovation Officer. After ten years as Dean of the Berkeley Haas School of Business, Rich brings a fresh and broad perspective. Stimulated by Professor Lyon’s keynote, we’ll get to the heart of the Summit, our peer to peer discussions. In these moderated sessions we’ll discuss best practices with colleagues from around the world. We’ll then share the results of the breakout sessions with everyone.

How?
This session is free but limited to Innovation educators. You can register for the event here and learn more on our website:  https://www.commonmission.us/summit. We look forward to gathering as a community to continue shaping the future of Lean Innovation Education.

Panelists and moderators include:  

Ivy Schultz – Columbia University
Victoria Larke – University of Toronto
Ali Hawks – BMNT
Julie Collins – Georgia Tech
Babu DasGupta – University of Wisconsin – Milwaukee
Bob Dorf – Columbia University
Michael Marasco – Northwestern University
Sabra Horne – BMNT
Phil Weilerstein – Venture Well
Tyrome Smith – Common Mission Project
Thomas O’Neal – University of Central Florida
Paul Fox – La Salle University
Philip Bouchard – TrustedPeer Entrepreneurship
Jim Hornthal – UC Berkeley
Todd Morrill – UC Berkeley
Todd Basche – BMNT
Dave Chapman – University College London
Stephanie Marrus – University of California – San Francisco
Sid Saleh – Colorado School of Mines
Joe Smith – Department of Defense
Jim Chung – George Washington University

When?

See you February 3rd, 2022 from 1 to 4pm EST, 10 to 1pm PST.
Register here

What’s Plan B? – The Small, the Agile, and the Many

This post previously appeared in the Proceedings of the Naval Institute.


One of the most audacious and bold manifestos for the future of Naval innovation has just been posted by the Rear Admiral who heads up the Office of Naval Research. It may be the hedge we need to deter China in the South China Sea.


While You Were Out
In the two decades since 9/11, while the U.S. was fighting Al-Qaeda and ISIS, China built new weapons and developed new operational concepts to negate U.S. military strengths. They’ve built ICBMs with conventional warheads to hit our aircraft carriers. They converted reefs in international waters into airbases, creating unsinkable aircraft carriers that extend the range of their aircraft and are armed with surface to air missiles make it dangerous to approach China’s mainland and Taiwan.

To evade our own fleet air defense systems, they’ve armed their missiles with maneuvering warheads, and to reduce our reaction time they have missiles that travel at hypersonic speed.

The sum of these Chinese offset strategies means that in the South China Sea the U.S. can no longer deter a war because we can longer guarantee we can win one.

This does not bode well for our treaty allies, Japan, the Philippines, and South Korea. Control of the South China Sea would allow China to control fishing operations and oil and gas exploration; to politically coerce other countries bordering in the region; to enforce an air defense identification zone (ADIZ) over the South China Sea; or to enforce a blockade around Taiwan or invade it.

What To Do About It?
Today the Navy has aircraft carriers, submarines, surface combatants, aircraft, and sensors under the sea and in space. Our plan to counter to China can be summed up as, more of the same but better and more tightly integrated.

This might be the right strategy. However, what if we’re wrong? What if our assumptions about the survivability of these naval platforms and the ability of our marines to operate, were based on incorrect assumption about our investments in material, operational concepts and mental models?

If so, it might be prudent for the Navy to have a hedge strategy. Think of a hedge as a “just in case” strategy. It turns out the Navy had one in WWII. And it won the war in the Pacific.

War Plan Orange
In the 1930s U.S. war planners thought about a future war with Japan. The result was “War Plan Orange” centered on the idea that ultimately, American battleships would engage the Japanese fleet in a gunnery battle, which the U.S. would win.

Unfortunately for us Japan didn’t adhere to our war plan. They were bolder and more imaginative than we were. Instead of battleships, they used aircraft carriers to attack us. The U.S. woke up on Dec. 7, 1941, with most of our battleships sitting on the bottom of Pearl Harbor. The core precept of War Plan Orange went to the bottom with it.

But the portfolio of options available to Admiral Nimitz and President Roosevelt were not limited to battleships. They had a hedge strategy in place in case the battleships were not the solution. The hedges? Aircraft carriers and submarines.

While the U.S. Navy’s primary investment pre-WW2 was in battleships, the Navy had also made a substantial alternative investment – in aircraft carriers and submarines. The Navy launched the first aircraft carrier in 1920. For the next two decades they ran fleet exercises with them. At the beginning of the war the U.S. Navy had seven aircraft carriers (CVs) and one aircraft escort vessel (AVG). By the end of the war the U.S. had built 111 carriers. (24 fleet carriers, 9 light carriers and 78 escort carriers.) 12 were sunk.

As it turned out, it was carriers, subs, and the Marines who won the Pacific conflict.

Our Current Plan
Fast forward to today. For the last 80 years the carriers in a Carrier Strike Group and submarines remain the preeminent formation for U.S. naval warfare.

China has been watching us operate and fight in this formation for decades. But what if carrier strike groups can no longer win a fight? What if the U.S. is underestimating China’s capabilities, intents, imagination, and operating concepts? What if they can disable or destroy our strike groups (via cyber, conventionally armed ICBMs, cruise missiles, hypersonics, drones, submarines, etc.)? If that’s a possibility, then what is the Navy’s 21st-century hedge? What is its Plan B?

Says Who?
Here’s where this conversation gets interesting. While I have an opinion, think tanks have an opinion, and civilians in the Pentagon have an opinion, RAdm Lorin Selby, the Chief of the Office of Naval Research (ONR), has more than just “an opinion.” ONR is the Navy’s science and technology systems command. Its job is to see over the horizon and think about what’s possible. Selby was previously deputy commander of the Naval Sea Systems Command (NAVSEA) and commander of the Naval Surface Warfare Centers (NSWC). As the chief engineer of the Navy, he was the master of engineering the large and the complex.

What follows is my paraphrasing RADM Selby’s thinking about a hedge strategy the Navy needs and how they should get there.

Diversification
A hedge strategy is built on the premise that you invest in different things, not more or better versions of the same.

If you look at the Navy force structure today and its plan for the next decade, at first glance you might say they have a diversified portfolio and a plan for more. The Navy has aircraft carriers, submarines, surface combatants, and many types of aircraft. And they plan for a distributed fleet architecture, including 321 to 372 manned ships and 77 to 140 large, unmanned vehicles.

But there is an equally accurate statement that this is not a diversified portfolio because all these assets share many of the same characteristics:

  • They are all large compared to their predecessors
  • They are all expensive – to the point where the Navy can’t afford the number of platforms our force structure assessments suggest they need
  • They are all multi-mission and therefore complex
  • The system-to-system interactions to create these complex integrations drive up cost and manufacturing lead times
  • Long manufacturing lead times mean they have no surge capacity
  • They are acquired on a requirements model that lags operational identification of need by years…sometimes decades when you fold in the construction span times for some of these complex capabilities like carriers or submarines
  • They are difficult to modernize – The ability to update the systems aboard these platforms, even the software systems, still takes years to accomplish

If the primary asset of the U.S. fleet now and in the future is the large and the complex, then surely there must be a hedge, a Plan B somewhere? (Like the pre-WW2 aircraft carriers.)  In fact, there isn’t. The Navy has demos of alternatives, but there is no force structure built on a different set of principles that would complicate China’s plans and create doubt in our adversaries of whether they could prevail in a conflict.

The Hedge Strategy – Create “the small, the agile, and the many”
In a world where the large and the complex are either too expensive to generate en masse or potentially too vulnerable to put at risk, “the small, the agile, and the many” has the potential to define the future of Navy formations.

We need formations composed of dozens, hundreds, or even thousands of unmanned vehicles above, below, and on the ocean surface. We need to build collaborating, autonomous formations…NOT a collection of platforms.

This novel formation is going to be highly dependent on artificial intelligence and new software that enables cross-platform collaboration and human machine teaming.

To do this we need a different world view. One that is no longer tied to large 20th-century industrial systems, but to a 21st-century software-centric agile world.

The Selby Manifesto:

  • Digitally adept naval forces will outcompete forces organized around principle of industrial optimization. “Data is the new oil and software is the new steel”
  • The systems engineering process we have built over the last 150 years is not optimal for software-based systems.
    • Instead, iterative design approaches dominate software design
  • The Navy has world-class engineering and acquisition processes to deal with hardware
    • but applying the same process and principles to digital systems is a mistake
  • The design principles that drive software companies are fundamentally different than those that drive industrial organizations.
  • Applying industrial-era principles to digital era technologies is a recipe for failure
  • The Navy has access to amazing capabilities that already exist. And part of our challenge will be to integrate those capabilities together in novel ways that allow new modes of operation and more effectiveness against operational priorities
  • There’s an absolute need to foster a collaborative partnership with academia and businesses – big businesses, small businesses, and startups
  • This has serious implication of how the Navy and Marine Corps needs to change. What do we need to change when it comes to engineering and operating concepts?

How To Get “The Small, The Agile, and The Many” Tested and In The Water?
Today, “the small, the agile and the many” have been run in war games, exercises, simulations, and small demonstrations, but not built at scale in a formation of dozens, hundreds, or even thousands of unmanned vehicles above, below and on the ocean’s surface. We need to prove whether these systems can fight alongside our existing assets (or independently if required).

ONR plans to rapidly prove that this idea works, and that the Navy can build it. Or they will disprove the theory. Either way the Navy needs to know quickly whether they have a hedge. Time is not on our side in the South China Sea.

ONR’s plan is to move boldly. They’re building this new “small, the agile, and the many”formation on digital principles and they’re training a new class of program managers – digital leaders – to guide the journey through the complex software and data.

They are going to partner with industry using rapid, simple, and accountable acquisition processes, using it to get through the gauntlet of discussions to contract in short time periods so we can get to work. And these processes are going to excite new partners and allies.

They’re going to use all the ideas already on the shelves, whether government shelves or commercial shelves, and focus on what can be integrated and then what must be invented.

All the while they’ve been talking to commanders in fleets around the world. And taking a page from digital engineering practices, instead of generating a list of requirements, they’re building to the operational need by asking “what is the real problem?” They are actively listening, using Lean and design thinking to hear and understand the problems, to build a minimal viable product – a prototype solution – and get it into the water. Then asking, did that solve the problem…no? Why not? Okay, we are going to go fix it and come back in a few months, not years.

The goal is to demonstrate this novel naval formation virtually, digitally, and then physically with feedback from in water experiments. Ultimately the goal is getting agile prototyping out to sea and doing it faster than ever before.

In the end the goal is to effectively evaluate the idea of the small, the agile, and the many. How to iterate at scale and at speed. How to take things that meet operational needs and make them part of the force structure, deploying them in novel naval formations, learning their operational capabilities, not just their technical merits. If we’re successful, then we can help guarantee the rest of century.

What Can Go Wrong?
During the Cold War the U.S. prided itself on developing offset strategies, technical or operational concepts that leapfrogged the Soviet Union. Today China has done that to us. They’ve surprised us with multiple offset strategies, and more are likely to come. The fact is that China is innovating faster than the Department of Defense, they’ve gotten inside our DoD OODA loop.

But China is not innovating faster than our nation as a whole. Innovation in our commercial ecosystem — in AI, machine learning, autonomy, commercial access to space, cyber, biotech, semiconductors (all technologies the DoD and Navy need) — continues to solve the toughest problems at speed and scale, attracting the best and the brightest with private capital that dwarfs the entire DoD R&E (research and engineering) budget.

RADM Selby’s plan of testing the hedge of “the small, the agile, and the many” using tools and technologies of the 21st century is exactly the right direction for the Navy.

However, in peacetime bold, radical ideas are not welcomed. They disrupt the status quo. They challenge existing reporting structures, and in a world of finite budgets, money has to be taken from existing programs and primes or programs even have to be killed to make the new happen. Even when positioned as a hedge, existing vendors, existing Navy and DoD organizations, existing political power centers, will all see “the small, the agile, and the many” as a threat. It challenges careers, dollars, and mindsets. Many will do their best to impede, kill or co-opt this idea.

We are outmatched in the South China Sea. And the odds are getting longer each year. In a war with China we won’t have years to rebuild our Navy.

A crisis is an opportunity to clear out the old to make way for the new. If senior leadership of the Navy, DoD, executive branch, and Congress truly believe we need to win this fight, that this is a crisis, then ONR and “the small, the agile, and the many” needs a direct report to the Secretary of the Navy and the budget and authority to make this happen.

The Navy and the country need a hedge. Let’s get started now.

Technology, Innovation, and Great Power Competition  – Wrap Up

This article first appeared in West Point’s Modern War Institute.

We just had our final session of our Technology, Innovation, and Great Power Competition class. Joe FelterRaj Shah and I designed the class to give our students insights on how commercial technology (AI, machine learning, autonomy, cyber, quantum, semiconductors, access to space, biotech, hypersonics, and others) will shape how we employ all the elements of national power (our influence and footprint on the world stage).

(Catch up with the class by reading our intro to the class, and summaries of Classes 1234, 5 6, 7 and 8.)


This class has four parts that were like most lecture classes in international policy:

  • Weekly Readings – 5-10 articles/week
  • 20+ guest speakers on technology and its impact on national power – prior secretaries of defense and state, current and prior National Security council members, four-star generals who lead service branches
  • Lectures/Class discussion
  • Midterm individual project – a 2,000-word policy memo that describes how a U.S. competitor is using a specific technology to counter U.S. interests and a proposal how the U.S. should respond

The fifth part of the class was unique.

  • A quarter-long, team-based final project. Students developed hypotheses of how commercial technologies can be used in new and creative ways to help the U.S. wield its instruments of national power. And then they got out of the classroom and interviewed 20+ beneficiaries, policy makers, and other key stakeholders testing their hypotheses and proposed solutions.

At the end of the quarter, each of the teams gave a final “Lessons Learned” presentation with a follow-up a 3,000 to 5,000-word team-written paper.

By the end the class all the teams realized that the problem they had selected had morphed into something bigger, deeper and much more interesting.

Team Army Venture Capital

Original problem statement: the U.S. needs to reevaluate and improve its public venture capital relationship with companies with dual-use technologies.

Final problem statement: the DoD needs to reevaluate and improve its funding strategies and partnerships with dual-use mid-stage private companies.

If you can’t see the presentation click here.

We knew that these students could write a great research paper. As we pointed out to them, while you can be the smartest person in the building, it’s unlikely that 1) all the facts are in the building, 2) you’re smarter than the collective intelligence sitting outside the building.

Team Conflicted Capital

Original problem statement: Chinese investment in US startups with critical technologies poses a threat to US military capabilities, but the lack of transparency in venture capital makes it challenging to track them.

Final problem statement: Chinese adversarial venture capital investments in U.S. dual-use startups continue to threaten US military capabilities across critical technologies, but the scope of the problem is relatively small. VCs and entrepreneurs can play a role in addressing the challenge by shunning known sources of adversarial capital.

If you can’t see the presentation click here.

By week 2 of the class students formed teams around a specific technology challenge facing a US government agency and worked throughout the course to develop their own proposals to help the U.S. compete more effectively through new operational concepts, organizations, and/or strategies.

Team Aurora

Original Problem Statement: How can the U.S. employ its cyber capabilities to provide the populace of China with unrestricted Internet access to bolster civil society against CCP crackdowns, in order to pressure the PRC, spread American liberal values, and uphold U.S. freedom of action in the information domain?

Final Problem Statement: How does the USG leverage a soft-power information campaign to support Hong Kong residents’ right to self-determination and democratic governance without placing individuals at undue risk (of prosecution as foreign agents under the National Security Law)?

If you can’t see the presentation click here.

We wanted to give our students hands-on experience on how to deeply understand a problem at the intersection of our country’s diplomacy, information, its military capabilities, economic strength, finance, intelligence, and law enforcement and dual-use technology. First by having them develop hypotheses about the problem; next by getting out of the classroom and talking to relevant stakeholders across government, industry, and academia to validate their assumptions; and finally by taking what they learned to propose and prototype solutions to these problems.

Team ShortCircuit

Original Problem Statement: U.S. semiconductor procurement is heavily dependent on TSMC, which creates a substantial vulnerability in the event a PRC invasion of Taiwan, or other kinetic disruptions in the Indo-Pacific.

Final Problem Statement: How should the U.S. Government augment the domestic semiconductor workforce through education and innovation initiatives to increase its semiconductor sector competitiveness?

If you can’t see the presentation click here. 

We want our students to build the reflexes and skills to deeply understand a problem by gathering first-hand information and validating that the problem they are solving is the real problem, not a symptom of something else. Then, students began rapidly building minimal viable solutions (policy, software, hardware …) as a way to test and validate their understanding of both the problem and what it would take to solve it.

Team Drone

Original Problem Statement: Drones can be used as a surprise element in an amphibious assault to overwhelm defenses. In a potential Taiwan Strait Crisis, there is a need for a low-cost and survivable counter-drone system to defend Taiwan.

Final Problem Statement: Taiwan needs a robust and survivable command and control system to effectively and quickly bring the right asset to the right place at the right time during an invasion.

If you can’t see the presentation click here.

One other goal of the class was testing a teaching team hypothesis – that we could turn a lecture class into one that gave back more in output than we put in. That by tasking the students to 1) use what they learned from the lectures and 2) then test their assumptions outside the classroom, the external input they received would be a force multiplier. It would make the lecture material real, tangible and actionable. And we and they would end up with something quite valuable.

Team Apollo

Original Problem Statement: The Space Force must leverage commercial innovation and establish a trained, experienced acquisition workforce that will deliver innovation impact that the Space Force requires.

Final Problem Statement: The United States Space Force lacks the supply chain and rapid launch capabilities needed to respond to contingencies in space. The private sector possesses these capabilities, but is not being adequately leveraged or incentivized.

If you can’t see the presentation click here. 

We knew we were asking a lot from our students. We were integrating a lecture class with a heavy reading list with the best practices of hypothesis testing from Lean Launchpad/Hacking for Defense/I-Corps. But I’ve yet to bet wrong in pushing students past what they think is reasonable. Most rise way above the occasion.

Given this was the first time we taught integrated lectures and projects our student reviews ranged from the “we must have paid them to write this” to “did they take the same class as everyone else?” (Actually it was, let’s fix the valid issues they raised.)


A few student quotes:

“This is a MUST TAKE [caps theirs]. The professors and teaching team are second to none, and the guest speakers are truly amazing. This course is challenging, but you truly get out of it what you put into it, and you will learn so much crucial and interesting material.”

“THIS IS A FANTASTIC COURSE! [caps theirs]. The material was excellent, the instruction from legendary professions was top notch and the reading material was timely, interesting, and relevant. Anyone who is interested in geopolitics and technology innovation needs to take this course. Not only that, but each week features a different guest speaker that is usually from the highest levels of US government and is THE expert in the subject for that week’s course. Really amazing experience getting to listen to and have Q&A with such incredible people.”


Team Catena

Original Problem Statement: China’s cryptocurrency ban presents the U.S. with an opportunity to influence blockchain development, attract technical talent, and leverage digital asset technology.

Final Problem Statement: CCP’s economic coercion makes countries such as Australia dependent on China’s economy and vulnerable to the party’s will. The U.S. must analyze which key Australian industries are most threatened and determine viable alternative trading partners.

If you can’t see the presentation click here.


A few more student quotes:

“This is hands-down one of the best courses I’ve taken at Stanford. From the moment I walked into the door, I was stunned by both the caliber of people you’re sharing oxygen with in that room, and how welcoming and accessible they are. Despite it being the first offering of this course, everything was well-organized, and our team was always supported with a wealth of resources and access we needed to get our policy deliverables to, alongside a healthy dose of near-constant feedback and encouragement from the teaching team. Readings were engaging and insightful, and the guest list we had was simply unbelievable- Mattis, McFaul, Rice, Pottinger, among several others in the White House, Pentagon, and beyond. There’s a real feeling that everyone who worked on this course wants you to grow as a student but also teach them what you’re learning.

Beware Steve Blank- he can be harsh and aggressive but exemplifies the ‘rude but life-saving doctor’ trope. I’ve learned more from responding to a single Blank cold-question in lecture than from three entire quarters of applied math at Stanford. Be sure to get started early on your teamwork and talk to the lecturers as much as you can- this really is a ‘you get as much as you give’ course, and the highest returns are to be had by being tenacious, loud, and unabashed in your questioning.
And, for God’s sake, don’t draw cartoons on your final presentation- the JCOS might be watching.

“DO NOT TAKE THIS COURSE! This class is a complete waste of time.“

“This was the worst class I took at Stanford “

While the positive feedback accolades for the class were rewarding, several comments identified areas we can improve:

  • Letting the students know upfront the workload and unique format of the class
  • Better organization and timing
    • Readings: be much clearer on which ones are mandatory vs optional
    • Clarify details, flows and objectives for each class
    • Tie speakers to projects / student presentations
  • Make weekly office hours mandatory to ensure all students receive regular professor/student interaction, feedback and guidance from week 1

All of our students put in extraordinary amount of work. Our students, a mix between international policy and engineering, will go off to senior roles in State, Defense, policy and to the companies building new disruptive technologies. They will be the ones to determine what the world-order will look like for the rest of the century and beyond. Will it be a rules-based order where states cooperate to pursue a shared vision for a free and open region and where the sovereignty of all countries large and small is protected under international law? Or will it be an autocratic and dystopian future coerced and imposed by a neo-totalitarian regime?

This class changed the trajectory of many of our students. A number expressed newfound interest in exploring career options in the field of national security. Several will be taking advantage of opportunities provided by the Gordian Knot Center for National Security Innovation to further pursue their contribution to national security.

Lessons Learned

  • We could turn a lecture class into one that gave back more in output than we put in.
  • Tasking the students to test their assumptions outside the classroom, the external input they received was a force multiplier
    • It made the lecture material real, tangible and actionable
  • Pushing students past what they think is reasonable results in extraordinary output. Most rise way above the occasion
  • The output of the class convinced us that the work of students like these could materially add to the safety and security of the free world
  • It is a national security imperative to create greater opportunities for our best and brightest to engage and address challenges at the nexus of technology, innovation and national security

Note: Inspired by our experience with this course, we decided to increase the focus of Stanford’s Gordian Knot Center for National Security Innovation on developing and empowering the extraordinary and largely untapped potential of students across the university and beyond.

%d bloggers like this: