Your Computer May Already be Hacked – NSA Inside?

In a time of universal deceit – telling the truth is a revolutionary act.
George Orwell

In Russia, President Putin’s office just stopped using PC’s and switched to typewriters.  What do they know that we don’t?

Perhaps it’s Intel NSA inside.

———

For those of you who haven’t kept up, the National Security Agency (NSA’s) Prism program has been in the news. Prism provides the NSA with access to data on the servers of Microsoft, Google, Facebook, etc, extracting audio and video chats, photographs, e-mails, documents, etc.

Prism is just a part of the NSA’s larger mass electronic surveillance program that covers every possible path someone might use to communicate; tapping raw data as it flows through fiber optic cables and Internet peering points, copying the addressees on all letters you physically mail, all credit card purchases, your phone calls and your location (courtesy your smart phone.)Slide03

All hell broke loose when Edward Snowden leaked all this to press.

Given my talks on the Secret History of Silicon Valley I was interviewed on NPR about the disclosure that the NSA said they had a new capability that tripled the amount of Skype video calls being collected through Prism. Like most Americans I said, “I didn’t remember getting the memo that the 4th amendment to our constitution had been cancelled.”

But while the interviewer focused on the Skype revelation, I thought the most interesting part was the other claim, “that the National Security Agency already had pre-encryption stage access to email on Outlook.”  Say what??  They can see the plaintext on my computer before I encrypt it? That defeats any/all encryption methods. How could they do that?

Bypass Encryption
While most outside observers think the NSA’s job is cracking encrypted messages, as the Prism disclosures have shown, the actual mission is simply to read all communications. Cracking codes is a last resort.

Slide04

The NSA has a history of figuring out how to get to messages before or after they are encrypted. Whether it was by putting keyloggers on keyboards and recording the keystrokes or detecting the images of the characters as they were being drawn on a CRT.

Today every desktop and laptop computer has another way for the NSA to get inside.

Intel Inside
It’s inevitable that complex microprocessors have bugs in them when they ship. When the first microprocessors shipped the only thing you could hope is that the bug didn’t crash your computer. The only way the chip vendor could fix the problem was to physically revise the chip and put out a new version. But computer manufacturers and users were stuck if you had an old chip. After a particularly embarrassing math bug in 1994 that cost Intel $475 million, the company decided to fix the problem by allowing it’s microprocessors to load fixes automatically when your computer starts.

Slide05

Starting in 1996 with the Intel P6 (Pentium Pro) to today’s P7 chips (Core i7) these processors contain instructions that are reprogrammable in what is called microcode. Intel can fix bugs on the chips by reprogramming a microprocessors microcode with a patch. This patch, called a microcode update, can be loaded into a processor by using special CPU instructions reserved for this purpose. These updates are not permanent, which means each time you turn the computer on, its microprocessor is reset to its built-in microcode, and the update needs to be applied again (through a computer’s BIOS.).

Since 2000, Intel has put out 29 microcode updates to their processors. The microcode is distributed by 1) Intel or by 2) Microsoft integrated into a BIOS or 3) as part of a Windows update. Unfortunately, the microcode update format is undocumented and the code is encrypted. This allows Intel to make sure that 3rd parties can’t make unauthorized add-ons to their chips. But it also means that no one can look inside to understand the microcode, which makes it is impossible to know whether anyone is loading a backdoor into your computer.

The Dog That Never Barked
The NSA has been incredibly thorough in nailing down every possible way to tap into communications. Yet the one company’s name that hasn’t come up as part of the surveillance network is Intel. Perhaps they are the only good guys in the entire Orwellian mess.Slide07

Or perhaps the NSA, working with Intel and/or Microsoft, have wittingly have put backdoors in the microcode updates. A backdoor is is a way of gaining illegal remote access to a computer by getting around the normal security built-in to the computer. Typically someone trying to sneak malicious software on to a computer would try to install a rootkit (software that tries to conceal the malicious code.) A rootkit tries to hide itself and its code, but security conscious sites can discover rootkits by tools that check kernel code and data for changes.

But what if you could use the configuration and state of microprocessor hardware in order to hide? You’d be invisible to all rootkit detection techniques that checks the operating system. Or what if you can make the microprocessor random number generator (the basis of encryption) not so random for a particular machine? (The NSA’s biggest coup was inserting backdoors in crypto equipment the Swiss sold to other countries.)

Rather than risk getting caught messing with everyone’s updates, my bet is that the NSA has compromised the microcode update signing keys  giving the NSA the ability to selectively target specific computers. (Your operating system ensures security of updates by checking downloaded update packages against the signing key.) The NSA then can send out backdoors disguised as a Windows update for “security.” (Ironic but possible.)

That means you don’t need backdoors baked in the hardware, don’t need Intel’s buy-in, don’t have discoverable rootkits, and you can target specific systems without impacting the public at large.

Two Can Play the Game
A few months ago these kind of discussions would have been theory at best, if not paranoia. Slide09The Prism disclosures prove otherwise – the National Security Agency has decided it needs the ability to capture all communications in all forms. Getting inside of a target computer and weakening its encryption or having access to the plaintext of encrypted communication seems likely. Given the technical sophistication of the other parts of their surveillance net, the surprise would be if they haven’t implemented a microcode backdoor.

The downside is that 1) backdoors can be hijacked by others with even worse intent. So if NSA has a microcode backdoor – who else is using it? and 2) What other pieces of our infrastructure, (routers, smartphones, military computers, satellites, etc) use processors with uploadable microcode?

——

And that may be why the Russian president is now using a typewriter rather than a personal computer.

Putin's TypewriterUpdate: I asked Intel:

  • Has Intel received any National Security Letters?
  • If you had received a National Security Letter would you be able to tell us that you did?
  • has Intel ever been contacted by anyone in the U.S. government about Microcode Updates or the signing keys?
  • Does anyone outside of Intel have knowledge of the Microcode Updates format or the signing keys?
  • Does anyone outside of Intel have access to the Microcode Updates or the signing key

Intel’s response from their Director of Corporate and Legal Affairs (italics mine):

“First, I have no idea whether we’ve ever received a National Security Letter and don’t intend on spending any time trying to find out.  It’s not something we would talk about in any case, regardless of the subject of your blog.

Second, the questions related microcode and the speculative portion of your blog related to our encryption of microcode and the key all seem to focus around one question:  Do we have backdoors available as a result of our microcode download encryption scheme?
The answer is NO.  Only Intel has that knowledge.”

Update 2:  A much better description of the problem was actually presented a year ago at Defcon

if you can’t see the presentation above click here

Listen to the post here: Or download the podcast here

The Endless Frontier: U.S. Science and National Industrial Policy (part 1)

The U.S. has spent the last 70 years making massive investments in basic and applied research. Government funding of research started in World War II driven by the needs of the military for weapon systems to defeat Germany and Japan. Post WWII the responsibility for investing in research split between agencies focused on weapons development and space exploration (being completely customer-driven) and other agencies charted to fund basic and applied research in science and medicine (being driven by peer-review.)

The irony is that while the U.S. government has had a robust national science and technology policy, it lacks a national industrial policy; leaving that to private capital. This approach was successful when U.S. industry was aligned with manufacturing in the U.S., but became much less so in the last decade when the bottom-line drove industries offshore.

In lieu of the U.S. government’s role in setting investment policy, venture capital has set the direction for what new industries attract capital.

This series of blog posts is my attempt to understand how science and technology policy in the U.S. began, where the money goes and how it has affected innovation and entrepreneurship. In future posts I’ll offer some observations how we might rethink U.S. Science and National Industrial Policy as we face the realities of China and global competition.

Office of Scientific Research and Development – Scientists Against Time
As World War II approached, Vannevar Bush, the ex-dean of engineering at MIT, single-handledly reengineered the U.S. governments approach to science and warfare. Bush predicted that World War II would be the first war won or lost on the basis of advanced technology. In a major break from the past, Bush believed that scientists from academia could develop weapons faster and better if scientists were kept out of the military and instead worked  in civilian-run weapons labs. There they would be tasked to develop military weapons systems and solve military problems to defeat Germany and Japan. (The weapons were then manufactured in volume by U.S. corporations.)

In 1940 Bush proposed this idea to President Roosevelt who agreed and appointed Bush as head, which was first called the National Defense Research Committee and then in 1941 the Office of Scientific Research and Development (OSRD).

OSRD divided the wartime work into 19 “divisions”, 5 “committees,” and 2 “panels,” each solving a unique part of the military war effort. These efforts spanned an enormous range of tasks – the development of advanced electronics; radar, rockets, sonar, new weapons like proximity fuse, Napalm, the Bazooka and new drugs such as penicillin and cures for malaria.

OSRD

The civilian scientists who headed the lab’s divisions, committees and panels were given wide autonomy to determine how to accomplish their tasks and organize their labs. Nearly 10,000 scientists and engineers received draft deferments to work in these labs.

One OSRD project – the Manhattan Project which led to the development of the atomic bomb – was so secret and important that it was spun off as a separate program. The University of California managed research and development of the bomb design lab at Los Alamos while the US Army managed the Los Alamos facilities and the overall administration of the project. The material to make the bombs – Plutonium and Uranium 235 – were made by civilian contractors at Hanford Washington and Oak Ridge Tennessee.

OSRD was essentially a wartime U.S. Department of Research and Development. Its director, Vannever Bush became in all but name the first presidential science advisor. Think of the OSRD as a combination of all of today’s U.S. national research organizations – the National Science Foundation (NSF), National Institute of Health (NIH), Centers for Disease Control (CDC), Department of Energy (DOE) and a good part of the Department of Defense (DOD) research organizations – all rolled into one uber wartime research organization.

OSRD’s impact on the war effort and the policy for technology was evident by the advanced weapons its labs developed, but its unintended consequence was the impact on American research universities and the U.S. economy that’s still being felt today.

National Funding of University Research
Universities were started with a mission to preserve and disseminate knowledge. By the late 19th century, U.S. universities added scientific and engineering research to their mission. However, prior to World War II corporations not universities did most of the research and development in the United States. Private companies spent 68% of U.S. R&D dollars while the U.S. Government spent 20% and universities and colleges accounted just for 9%, with most of this coming via endowments or foundations.

Before World War II, the U.S. government provided almost no funding for research inside universities. But with the war, almost overnight, government funding for U.S. universities skyrocketed. From 1941-1945, the OSRD spent $450 million dollars (equivalent to $5.5 billion today) on university research. MIT received $117 million ($1.4 billion in today’s dollars), Caltech $83 million (~$1 billion), Harvard and Columbia ~$30 million ($370 million.) Stanford was near the bottom of the list receiving $500,000 (~$6 million). While this was an enormous sum of money for universities, it’s worth putting in perspective that ~$2 billion was spent on the Manhattan project (equivalent to ~$25 billion today.)OSRD and Universities

World War II and OSRD funding permanently changed American research universities. By the time the war was over, almost 75% of government research and development dollars would be spent inside Universities. This tidal wave of research funds provided by the war would:

  • Establish a permanent role for U.S. government funding of university research, both basic and applied
  • Establish the U.S. government – not industry, foundations or internal funds – as the primary source of University research dollars
  • Establish a role for government funding for military weapons research inside of U.S. universities (See the blog posts on the Secret History of Silicon Valley here, and for a story about one of the University weapons labs here.)
  • Make U.S. universities a magnet for researchers from around the world
  • Give the U.S. the undisputed lead in a technology and innovation driven economy – until the rise of China.

The U.S. Nationalizes Research
As the war drew to a close, university scientists wanted the money to continue to flow but also wanted to end the government’s control over the content of research. That was the aim of Vannevar Bush’s 1945 report, Science: the Endless Frontier. Bush’s wartime experience convinced him that the U.S. should have a policy for science. His proposal was to create a single federal agency – the National Research Foundation – responsible for funding basic research in all areas, from medicine to weapons systems. He proposed that civilian scientists would run this agency in an equal partnership with government. The agency would have no laboratories of its own, but would instead contract research to university scientists who would be responsible for all basic and applied science research.

But it was not to be. After five years of post-war political infighting (1945-1950), the U.S. split up the functions of the OSRD.  The military hated that civilians were in charge of weapons development. In 1946 responsibility for nuclear weapons went to the new Atomic Energy Commission (AEC). In 1947, responsibility for basic weapons systems research went to the Department of Defense (DOD). Medical researchers who had already had a pre-war National Institutes of Health chafed under the OSRD that lumped their medical research with radar and electronics, and lobbied to be once again associated with the NIH. In 1947 the responsibility for all U.S. biomedical and health research went back to the National Institutes of Health (NIH). Each of these independent research organizations would support a mix of basic and applied research as well as product development.

The End of OSRD

Finally in 1950, what was left of Vannevar Bush’s original vision – government support of basic science research in U.S. universities – became the charter of the National Science Foundation (NSF).  (Basic research is science performed to find general physical and natural laws and to push back the frontiers of fundamental understanding. It’s done without thought of specific applications towards processes or products in mind. Applied research is systematic study to gain knowledge or understanding with specific products in mind.)

Despite the failure of Bush’s vision of a unified national research organization, government funds for university research would accelerate during the Cold War.

Coming in Part 2 – Cold War science and Cold War universities.

Lessons Learned

  • Large scale federal funding for U.S. science research started with the Office of Scientific Research and Development (OSRD) in 1940
  • Large scale federal funding for American research universities began with OSRD in 1940
  • In exchange for federal science funding, universities became partners in weapons systems research and development

Listen to the post here: Download the Podcast here

Startup Communities – Building Regional Clusters

How to build regional entrepreneurial communities has just gotten it’s first “here’s how to do it” book. Brad Feld’s new book Startup Communities joins the two other “must reads,” (Regional Advantage and Startup Nation) and one “must view” (The Secret History of Silicon Valley) for anyone trying to understand the components of a regional cluster.

There’s probably no one more qualified to write this book then Brad Feld (startup founder, co founder of two VC firms – Mobius and Foundry, and founder of TechStars.)

Leaders and Feeders
Feld’s thesis is that unlike the common wisdom, it is entrepreneurs that lead a startup community while everyone else feeds the community.

Feld describes the characteristics of those who want to be regional Entrepreneurial Leaders; they need to be committed to their region for the long term (20+ years), the community and its leaders must be inclusive, play a non-zero sum game, be mentorship-driven and be comfortable experimenting and failing fast.

Feeders include the government, universities, investors, mentors, service providers and large companies. He points out that some of these, government, universities and investors think of themselves as the leaders and Feld’s thesis is that we’ve gotten it wrong for decades.

This is a huge insight, a big idea and a fresh way to view and build a regional ecosystem in the 21st century. It may even be right.

Activities and Events
One of the most surprising (to me) was the observation that a regional community must have continual activities and events to engage all participants. Using Boulder Colorado as an example, (Feld’s home town) this small entrepreneurial community runs office hours, Boulder Denver Tech Meetup, Boulder Open Coffee ClubIgnite Boulder, Boulder Beta, Boulder Startup Digest, Startup Weekend events, CU New Venture Challenge, Boulder Startup Week, Young Entrepreneurs Organization and the Entrepreneurs Foundation of Colorado. For a city of 100,000 (in a metro area of just 300,000 people) the list of activities/events in Boulder takes your breath away. They are not run by the government or any single organization. These are all grassroots efforts by entrepreneurial leaders. These events are a good proxy for the health and depth of a startup community.

Incubators and Accelerators
One of the best definitions in the book is when Feld articulates the difference between an incubator and an accelerator. An incubator provides year-round physical space, infrastructure and advice in exchange for a fee (often in equity.) They are typically non-profit, attached to a university (or in some locations a local government.) For some incubators, entrepreneurs can stay as long as they want. There is no guaranteed funding. In contrast, an accelerator has cohorts going through a program of a set length, with funding typically provided at the end.

Feld describes TechStars (founded in 2006 with David Cohen) as an example of how to build a regional accelerator. In contrast to other accelerators TechStars is mentor-driven, with a profound belief that entrepreneurs learn best from other entrepreneurs. It’s a 90-day program with a clear beginning and end for each cohort. TechStars selection criteria is to first focus on picking the right team then the market. They invest $118,000 ($18k seed funding + $100K convertible note) in 10 teams per region.

Role of Universities
To the entrepreneurial community Stanford and MIT are held up as models for “outward-facing” research universities. They act as community catalysts, as a magnet for great entrepreneurial talent for the region, and as teachers and then a pipeline for talent back into the region. In addition their research offers a continual stream of new technologies to be commercialized.

Feld’s observation is that that these schools are exceptions that are hard to duplicate. In most universities entrepreneurial engagement is not rewarded, there’s a lack of resources for entrepreneurial programs and cross-campus collaboration is not in the DNA of most universities.

Rather than thinking of the local university as the leader, Feld posits a more effective approach is to use the local college or university as a resource and a feeder of entrepreneurial students to the local entrepreneurial community. He uses Colorado University’ Boulder as an example of of a regional university being as inclusive as possible with courses, programs and activities.

Finally, he suggests engaging alumni for something other than fundraising – bringing back to the campus, having them mentor top students and celebrating their successes.

Role of Government
Feld is not a big fan of top-down government driven clusters. He contrasts the disconnect between entrepreneurs and government. Entrepreneurs are painfully self-aware but governments are chronically not self-aware.  This makes government leaders out of touch on how the dynamics of startups really work. Governments have a top-down command and control hierarchy, while entrepreneurs work in a bottoms-up networked world. Governments tend to focus on macro metrics of economic development policy while entrepreneurs talk about lean, startups, people and product. Entrepreneurs talk about immediate action while government conversations about policy do not have urgency.  Startups aim for immediate impact, while governments want to control. Startup communities are networked and don’t lend themselves to a command and control system.

Community Culture
Feld believes that the Community Culture, how individuals interact and behave to each other, is a key part of defining and entrepreneurial community. His list of cultural attributes is an  integral part of Silicon Valley. Give before you get, (in the valley we call this the “pay it forward” culture.) Everyone is a mentor, so share your knowledge and give back. Embrace weirdness, describes a community culture that accepts differences. (Starting post World War II the San Francisco bay area became a magnet for those wanting to embrace alternate lifestyles. For personal lifestyles people headed to San Francisco. For alternate business lifestyles they went 35 miles south to Silicon Valley.)

I was surprised to note that the biggest cultural meme of Silicon Valley didn’t make his Community Culture chapter – failure equals experience.

Broadening the Startup Community
Feld closes by highlighting some of the issues faced by a startup community in Boulder.  The one he calls Parallel Universes notes that there may be industry specific (biotech, clean tech etc.) startup communities sitting side-by-side and not interacting with each other.

He then busts the myths clusters tell themselves; “lets be like Silicon Valley” and the “there’s not enough capital here.”

Quibbles
There’s data that that seems to indicate a few of Feld’s claims about about the limited role of venture, universities and governments might be overly broad (but doesn’t diminish his observation that they’re feeders not leaders.) In addition, while Silicon Valley was a series of happy accidents, other national clusters have extracted its lessons and successfully engineered on top of those heuristics. And while I might have misread Feld’s premise about local venture capital, but it seems to be, “if there isn’t a robust venture capital in your region it’s because there isn’t a vibrant entrepreneurial community with great startups. As venture capital exists to service startup when great startups are built investors will show up.” Wow.

Finally, local government top-down initiatives are not the only way governments can incentivize entrepreneurial efforts. Some like the National Science Foundation Innovation Corps have had a big bang for little bucks.

Summary
Entrepreneurship is rising in almost every major city and region around the world. I host at least one region a week at the ranch and each of these regions are looking for a roadmap. Startup Communities is it. It’s a strategic, groundbreaking book and a major addition to what was missing in the discussion of how to build a regional cluster. I’m going to be quoting from it liberally, stealing from it often, and handing it out to my visitors.

Buy it.

Lessons Learned

  • Entrepreneurs lead a startup community while everyone else feeds the community
  • Feeders include the government, universities, investors, mentors, service providers and large companies
  • Continual activities and events are essential to engage all participants
  • Top-down government-driven clusters are an oxymoron
  • Building a regional entrepreneurial culture is critical

Listen to the post here: Download the Podcast here

The Pay-It-Forward Culture

Foreign visitors to Silicon Valley continually mention how willing we are to help, network and connect strangers.  We take it so for granted we never even to bother to talk about it.  It’s the “Pay-It-Forward” culture.

——-

We’re all in this together – The Chips are Down
in 1962 Walker’s Wagon Wheel Bar/Restaurant in Mountain View became the lunch hangout for employees at Fairchild Semiconductor.

When the first spinouts began to leave Fairchild, they discovered that fabricating semiconductors reliably was a black art. At times you’d have the recipe and turn out chips, and the next week something would go wrong, and your fab couldn’t make anything that would work. Engineers in the very small world of silicon and semiconductors would meet at the Wagon Wheel and swap technical problems and solutions with co-workers and competitors.

We’re all in this together – A Computer in every Home
In 1975 a local set of hobbyists with the then crazy idea of a computer in every home formed the Homebrew Computer Club and met in Menlo Park at the Peninsula School then later at the Stanford AI Lab. The goal of the club was: “Give to help others.” Each meeting would begin with people sharing information, getting advice and discussing the latest innovation (one of which was the first computer from Apple.) The club became the center of the emerging personal computer industry.

We’re all in this together – Helping Our Own
Until the 1980’s Chinese and Indian engineers ran into a glass ceiling in large technology companies held back by the belief that “they make great engineers but can’t be the CEO.”  Looking for a chance to run their own show, many of them left and founded startups. They also set up ethnic-centric networks like TIE (The Indus Entrepreneur) and the Chinese Software Professionals Association where they shared information about how the valley worked as well as job and investment opportunities. Over the next two decades, other groups — Russian, Israeli, etc. — followed with their own networks. (Anna Lee Saxenian has written extensively about this.)

We’re all in this together – Mentoring The Next Generation
While the idea of groups (chips, computers, ethnics) helping each other grew, something else happened. The first generation of executives who grew up getting help from others began to offer their advice to younger entrepreneurs. These experienced valley CEOs would take time out of their hectic schedule to have coffee or dinner with young entrepreneurs and asking for nothing in return.

They were the beginning of the Pay-It-Forward culture, the unspoken Valley culture that believes “I was helped when I started out and now it’s my turn to help others.”

By the early 1970’s, even the CEOs of the largest valley companies would take phone calls and meetings with interesting and passionate entrepreneurs. In 1967, when he was 12 years old Steve Jobs called up Bill Hewlett the co-founder of HP.

In 1975, when Jobs was a young unknown, wannabe entrepreneur called the Founder/CEO of Intel, Bob Noyce and asked for advice. Noyce liked the kid, and for the next few years, Noyce met with him and coached him as he founded his first company and went through the highs and lows of a startup that caught fire.

Steve Jobs and Robert Noyce

Bob Noyce took me under his wing, I was young, in my twenties. He was in his early fifties. He tried to give me the lay of the land, give me a perspective that I could only partially understand,” Jobs said, “You can’t really understand what is going on now unless you understand what came before.”

What Are You Waiting For?
Last week in Helsinki Finland at a dinner with a roomful of large company CEO’s, one of them asked, ”What can we do to help build an ecosystem that will foster entrepreneurship?” My guess is they were expecting me talk about investing in startups or corporate partnerships. Instead, I told the Noyce/Jobs story and noted that, as a group, they had a body of knowledge that entrepreneurs and business angels would pay anything to learn. The best investment they could make to help a startup culture in Finland would be to share what they know with the next generation. Even more, this culture could be created by a handful of CEO’s and board members who led by example. I suggested they ought to be the ones to do it.

We’ll see if they do.

——

Over the last half a century in Silicon Valley, the short life cycle of startups reinforced the idea that – the long term relationships that lasted was with a network of people – much larger than those in your current company. Today, in spite of the fact that the valley is crawling with IP lawyers, the tradition of helping and sharing continues. The restaurants and locations may have changed, moving from Rickey’s Garden Cafe, Chez Yvonne, Lion and Compass and Hsi-Nan to Bucks, Coupa Café and Café Borrone, but the notion of competitors getting together and helping each other and experienced business execs offering contacts and advice has continued for the last 50 years.

It’s the “Pay-It-Forward” culture.

Lessons Learned

  • Entrepreneurs in successful clusters build support networks outside of existing companies
  • These networks can be around any area of interest (technology, ethnic groups, etc.)
  • These were mutually beneficial –  you learned and contributed to help others
  • Over time experienced executives “pay-back” the help they got by mentoring others
  • The Pay-It-Forward culture makes the ecosystem smarter

Listen to the post here: Download the Podcast here

The Internet Might Kill Us All

My friend Ben Horowitz and I debated the tech bubble in The Economist. An abridged version of this post was the “closing” statement to Ben’s rebuttal comments. Part 1 is here and Part 2 here.  The full version is below.

—————————————————
It’s been fun debating the question, “Are we in a tech bubble?” with my colleague Ben Horowitz. Ben and his partner Marc Andreessen (the founder of Netscape and author of the first commercial web browser on the Internet) are the definition of Smart Money. Their firm, Andreessen/Horowtiz, has been prescient enough to invest in social networks, consumer and mobile applications and the cloud long before others. They understood the ubiquity, pervasiveness and ultimate profitability of these startups and doubled-down on their investments.

My closing arguments are below. I’ve followed them with a few observations about the Internet that may help frame the scope of the debate.

Are we in the beginnings of a tech bubble – yes.
Prices for both private and public tech valuations exceed any rational valuation to their current worth. In 5 to 10 years most of them will be worth a fraction of their IPO price.  A few will be worth much, much more.

Is this tech bubble as broad as the 1995-2000 dot.com bubble – no.
While labeled the “dot.com” bubble, valuations went crazy across a wide range of technology sectors including telecommunications, enterprise software and biotech, not just the Internet.

Are tech bubbles necessarily bad – no.
A bubble is simply the redistribution of wealth from Marks to the Smart Money and Promoters. I hypothesize that unlike bubbles in other sectors  – tulips, Florida land prices, housing, financial – tech bubbles create lasting value. They finance companies that invest in new technologies, new ideas and new products. And it appears that at least in Silicon Valley, a larger percentage of money made in the last tech bubble is recirculated back into investments into the next generation of tech startups.

While most of the social networks, cloud computing, web and mobile app companies we see today will fail, a few will literally remake our lives.

Here are two views how.

The Internet May Liberate Us
In the last year, we’ve seen Social Networks enable new forms of peaceful revolution. To date, the results of Twitter and Facebook are more visible on the Arab Street than Wall Street.

One of the most effective weapons in the Cold War was the mimeograph machine and the VCR. The ability to copy and disseminate banned ideas undermined repressive regimes from Poland to Iran to the Soviet Union.

In the 21st century, authoritarian governments still fear their own people talking to each other and asking questions. When governments shut down Google, Twitter, Facebook, et al, they are building the 21st century equivalent of the Berlin Wall. They are admitting to the world that the forces of oppression can’t stand up to 140 characters of the truth.

When these governments build “homegrown” versions of these apps, the Orwellian prophecy of the Ministry of the Truth lives in each distorted or missing search result. Absent war, these regimes eventually collapse under their own weight. We can help accelerate their demise by building tools which allow people in these denied areas access to the truth.

Yet the same set of tools that will free hundreds of millions of people may end their lives in minutes.

The Internet May Kill Us
The next war will more than likely occur via the Internet. It may be over in minutes. We may be watching the first skirmishes.

In the 20th century, the economies of first-world countries became dependent on a reliable supply of food, water, electricity, transportation and telephone. Part of waging war was destroying that physical infrastructure. (The Combined Bomber Offensive of Germany and occupied Europe during WWII was designed to do just that.)

In the last few years, most first world countries have become dependent on the Internet as one of those critical parts of our infrastructure. We use the net in four different ways: 1) to control the physical infrastructure we built in the 20th century (food, water, electricity, transportation and communications); 2) as the network for our military interconnecting all our warfighting assets, from the mundane of logistics to command and control systems, weapons systems and targeting systems; 3) as commercial assets that exist or can operate only if the net exists including communication tools (email, Facebook, Twitter, etc.) and corporate infrastructure (Cloud storage and apps); 4) for our banking and financial systems.

Every day hackers demonstrate how weak the security of our corporate and government resources are. Stealing millions of credit cards occurs on a regular basis. Yet all of these are simply crimes not acts of war.

The ultimate in asymmetric warfare
In the 20th century, the United States was continually unprepared for an adversary using asymmetric warfare — the Japanese attack on Pearl Harbor, Soviet Anthrax warheads on their ICBMs during the cold war, Vietnam and guerilla warfare, and the 9/11 attacks.

While hacker attacks against banks and commercial institutions make good press, the most troubling portents of the next war were the Stuxnet attack on the Iranian centrifuge facilities, the compromise of the RSA security system and the penetration of American defense contractors. These weren’t Lulz or Anonymous hackers, these were attacks by government military projects with thousands of programmers coordinating their efforts. All had a single goal in mind: to prepare to use the internet to destroy a country without physically killing its people.

Our financial systems (banks, stock market, credit cards, mortgages, etc.) exist as bits.  Your net worth and mine exists because there are financial records that tell us how many “dollars” (or Euros, Yen, etc.) we own. We don’t physically have all that money. It’s simply the sum of the bits in a variety of institutions.

An attack on the United States could begin with the destruction of all those financial records. (A financial institution that can’t stop criminal hackers would have no chance against a military attack to destroy the customer data in their systems. Because security is expensive, hard, and at times not user friendly, the financial services companies have fought any attempt to mandate hardened systems.) Logic bombs planted on those systems will delete all the backups once they’re brought on-line. All of it gone.  Forever.

At the same time, all cloud-based assets, all companies applications and customer data will be attacked and deleted. All of it gone.  Forever.

Major power generating turbines will be attacked the same way Stuxnet worked– over and under-speeding the turbines and rapidly cycling the switching systems until they burn out.  A major portion of our electrical generation capacity will be off-line until replacements can be built. (They are currently built in China.)

Our transportation infrastructure– air traffic control systems, airline reservations, package delivery companies– will be hacked and our GPS infrastructure will be taken down (hacked, jammed or physically attacked.)

While some of our own military systems are hardened, attackers will shut down the soft parts of the military logistics and communications systems. Since our defense contractors have been the targets of some of the latest hacks, our newest weapons systems may not work, or worse if used, may have been reprogrammed to destroy our own assets.

An attacker may try to mask its identity by making the attack appear to come from a different source. With our nation in an unprecedented economic collapse, our ability to retaliate militarily against a nuclear-armed opponent claiming innocence and threatening a response while we face them with unreliable weapons systems could make for a bad day. Our attacker might even offer economic assistance as part of the surrender terms.

These scenarios make the question, “Are we in a tech bubble?” seem a bit ironic.

It Doesn’t Have to Happen
During the Cold War the United States and the Soviet Union faced off with an arsenal of strategic and tactical nuclear weapons large enough to directly kill hundreds of millions of people and plunge the planet in a “Nuclear Winter,” which could have killed billions more. But we didn’t do it. Instead, today the McDonalds in plazas labeled “Revolutionary Square” has been the victory parade for democracy and capitalism.

It may be that we will survive the threat of a Net War like we did the Cold War and that the Internet turns out to be the birth of a new spring for us all.
Listen to the post here Download the Podcast here

Panic at the Pivot – Aligning Incentives By Burning the Boats

It’s a paradox, but early sales success in a startup can kill its chances of becoming a large successful company. The cause is often sales and marketing execs who’ve become too comfortable with an initial sales model and panic at the first sign of a Pivot. As a result they block new iterations of the business model that might take the company to the next level.

Fairchild
As I was reading a history of the startup years of Fairchild Semiconductor, I realized that a problem I thought was new – sales as an obstacle to Pivots – had occurred 50 years ago at the dawn of what would become Silicon Valley.

Fairchild, the first successful semiconductor company in the valley, was founded on two technical innovations: manufacturing transistors out of Silicon instead of the then conventional Germanium, and using a diffusion manufacturing process which enabled the production of silicon mesa transistors in batches on assembly line. (While this might sound like Greek to you, it was a revolution.)

Early on, the young company made a dramatic technical pivot when it discovered a way to build silicon planar transistors that dramatically improved reliability. (This was an even bigger revolution.) This increased reliability qualified Fairchild’s transistors for military weapons systems (airborne electronics, missile guidance systems, etc.) With orders from military subcontractors arming the cold war, Fairchild’s sales skyrocketed from $500K in 1958  to $7M in 1959 to $21M in 1960.

By the end of 1960, Fairchild was at the top of its game. In less than three years from the day it started, the company had pivoted its technology process, sales had done a masterful job of Customer Discovery and had found a sweet spot in the market and its fabrication plants were busy turning out as many transistors and diodes as they could make.

What could go wrong?

It was when engineering Pivoted again. And this time sales revolted.

The Revolution Will Not Be Televised
When Fairchild engineers realized that its planar process of manufacturing individual transistors could now be connected together on a single piece of silicon, the Integrated Circuit was born. Engineering thought this could dramatically change the way electronic systems were built, but the head of sales tried to kill the Integrated Circuit program, loudly and vociferously. Engineering was confused, why didn’t the Fairchild salesforce want a revolutionary new product line?

Over My Dead Body
From the point of view of the sales organization this new family of integrated circuits were a major distraction. The Fairchild sales team was on a roll executing a known business model – selling planar diodes and transistors into an existing market. In the transistor market, the problem was known, the customer was known and the basis of competition was known (technical features, price and delivery schedule.)

Integrated circuits were different. Unlike transistors, no one in 1960 was clamoring for the new technology. Integrated circuits were a new market. It wasn’t clear exactly what problem the product would solve, or who the customer was. In fact, the most likely customers, computer designers were openly hostile as they saw integrated circuits doing what they were supposed to be doing – designing circuits.  So selling integrated circuits meant a search for a business model.

This meant that a high testosterone sales team that was busy “executing” as order takers and deal makers had to put on a different hat and become educators and consultative engineers.  No way.

You Get What You Incent
What the engineers also didn’t know is that the head of Sales of Fairchild had cut a great deal on his compensation package. He was paid 1% of gross sales. While this made sense in the first few years when Fairchild was a startup, now it had unintended consequences. His salesmen were also compensated on a commission basis. Why would they want a product they had to force customers to take when they had existing products that were making them rich?

The VP of sales’ incentives led him to stifle any innovation that got in the way of selling as much of the current technology as he could – even if it meant killing the future of the company. Luckily for Fairchild and the future of the semiconductor and computer business, he quit when his compensation plan was changed.

The Land of the Living Dead
I see this same pattern in early stage startups. Early sales look fine, but often plateau. Engineering comes into a staff meeting with several innovative ideas and the head of sales and/or marketing shoot them down with the cry of “It will kill our current sales.”

The irony is that “killing our current sales” is often what you need to do. Most startups don’t fail outright, they end up in “the land of living dead” where sales are consistently just OK but never breakout into a profitable and scalable company. This is usually due to a failure of the CEO and board in forcing the entire organization to Pivot. The goal of a scalable startup isn’t optimizing the comp plan for the sales team but optimizing the long-term outcome of the company. At times they will conflict. And startup CEO’s need a way to move everyone out of their comfort zone to the bigger prize.

Burn The Boats
In 1519 Hernando Cortes landed in the Yucatan peninsula to conquer the Aztec Empire and bring their treasure back to Spain. His small army arrived in 11 boats. As they landed Cortes solved the problem of getting his team focused on what was ahead of them – he ordered them to burn the boats they came in. Now the only way home was to succeed in their new venture or die.

Pivots that involve radical changes to the business model may at times require burning the boats at the shore.

——

Every chip company in Silicon Valley is descended from Fairchild.

Lessons Learned

  • Sales organizations may get too comfortable to early.
  • Sales execs execute to their compensation plans.
  • Pivots are not subject to a vote in the exec staff meeting.
  • CEO’s and their boards make the Pivot decisions.
  • To force a Pivot burn the boats at the shore.

Listen to post here: Download the Podcast here

The Secret History of Silicon Valley Part 15: Agena – The Secret Space Truck, Ferret’s and Stanford

This post is the latest in the “Secret History Series.”  They’ll make much more sense if you read some of the earlier ones for context. See the Secret History video and slides as well as the bibliography for sources and supplemental reading.

————

By the early 1960’s Lockheed Missiles Division in Sunnyvale was quickly becoming the largest employer in what would be later called Silicon Valley.  Along with its publically acknowledged contract to build the Polaris Submarine Launched Ballistic Missile (SLBM,) Lockheed was also secretly building the first photo reconnaissance satellites (codenamed CORONA) for the CIA in a factory in East Palo Alto.

It was only a matter of time before Stanford’s Applied Electronics Lab research on Electronic and Signals Intelligence and Lockheed’s missiles and spy satellites intersected. Here’s how.

Lockheed Agena

Thor/AgenaD w/Corona

In addition to the CORONA CIA reconnaissance satellites, Lockheed was building another assembly line, this one for the Agena – a space truck.  The Agena sat on top of a booster rocket (first the Thor, then the Altas and finally the Titan) and had its own rocket engine that would help haul the secret satellites into space. The engine (made by Bell Aerosystems) used storable hypergolic propellants so it could be restarted in space to change the satellite’s orbit.  Unlike other second stage rockets, once in orbit, the CORONA reconnaissance satellite would stay attached to the Agena which stabilized the satellite, pointed it in the right location, and oriented it in the right direction to send its recovery capsule on its way back to earth.

The Agena would be the companion to almost all U.S. intelligence satellites for the next decade.  Three different models were built and for over a decade nearly four hundred of them (at the rate of three a month) would be produced on an assembly line in Sunnyvale, and tested in Lockheed’s missile test base in the Santa Cruz mountains.

Agena Ferrets – Program 11
As Lockheed engineers gained experience with the Agena and the CORONA photo reconnaissance satellite, they realized that they had room on a rack in the back of the Agena to carry another payload (as well as the extra thrust to lift it into space.) By the summer of 1962, Lockheed proposed a smaller satellite that could be deployed from the rear of the Agena. This subsatellite was called Program 11, or P-11 for short.  The P-11 subsatellite weighed up to 350lbs, had its own solid rockets to boost it into different orbits, solar arrays for power and was stabilized by either deploying long booms or by spinning 60-80 times a second.

Agena Internals

And they had a customer who couldn’t wait to use the space.  While the CORONA reconnaissance satellites were designed to take photographs from space, putting a radar receiver on a satellite would be enable it to receive, record and locate Soviet radars deep
inside the Soviet Union. For the first time, the National Security Agency (working through the National Reconnaissance Office) and the U.S. Air Force could locate radars which would threaten our manned bombers as well as those that might be part of an anti-ballistic missile system.  Most people thought the idea was crazy. How could you pick up a signal so faint while the satellite was moving so rapidly? Could you sort out one radar signal from all the other noise? There was one way to find out. Build the instruments and have them piggyback on the Agena/CORONA photo reconnaissance satellites.

But who could quickly build these satellites to test this idea?

Stanford and Ferrets
Just across the freeway from Lockheed’s secret CORONA assembly plant in Palo Alto, James de Broekert was at Stanford Applied Electronics Laboratory. This was the Lab founded by Fred Terman from his WWII work in Electronic Warfare.

“This was an exciting opportunity for us,” de Broekert remembered. “Instead of flying at 10,000 or 30,000 feet, we could be up at 100 to 300 miles and have a larger field of view and cover much greater geographical area more rapidly. The challenges were establishing geolocation and intercepting the desired signals from such a great distance. Another challenge was ensuring that the design was adapted to handle the large number of signals that would be intercepted by the satellite. We created a model to determine the probability of intercept on the desired and the interference environment from the other radar signals that might be in the field of view, de Broekert explained.

“My function was to develop the system concept and to establish the system parameters. I was the team leader, but the payloads were usually built as a one-man project with one technician and perhaps a second support engineer. Everything we built at Stanford was essentially built with stockroom parts. We built the flight-ready items in the laboratory, and then put them through the shake and shock fall test and temperature cycling…”

Agena and Ferret Subsatellite credit: USAF

Like the cover story for the CORONA (which called them Discoverer scientific research satellites,) the first three P-11 satellites were described as “science” missions with results published in the Journal of Geophysical Research.

Just fifteen years after Fred Terman had built Electronic Intelligence and Electronic Warfare systems for bombers over Nazi Germany, Electronic Intelligence satellites were being launched in space to spy on the Soviet Union.

Close to 50 Ferret subsatellites were launched as secondary payloads aboard Agena photo reconnaissance satellites.

Ferret Entrepreneur
After student riots in April 1969 at Stanford shut down the Applied Electronics Laboratory, James de Broekert left Stanford. He was a co-founder of three Silicon Valley military intelligence companies: Argo Systems, Signal Science, and Advent Systems,

In 2000 the National Reconnaissance Office recognized James de Broekert as a “pioneer” for his role in the “establishment of the discipline of national space reconnaissance.”

Add to FacebookAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to TwitterAdd to TechnoratiAdd to Yahoo BuzzAdd to Newsvine

Balloon Wars: Part 16 of the Secret History of Silicon Valley

In the 1950’s the U.S. Military and the CIA enlisted balloons (some as tall as a 40-story building) as weapons systems targeting the Soviet Union. Throughout the decade they launched a series of Top Secret/codeword balloon projects and thousands of balloons, to gather intelligence about the Soviet Union. The individual stories of these programs are interesting but an unexpected consequence of their secrecy was that they created a mythology that outlasted the missions.

Why Balloons?
In the 1950’s balloons had attributes that airplanes couldn’t match. In the days before satellites they could stay aloft for a long time (days or even weeks,) they could reach altitudes where airplanes couldn’t fly (100,000 feet,) and they could go places that were too dangerous for manned aircraft (flying over the Soviet Union.)

The Search for Soviet Nuclear Weapons
Project MOGUL was an Air Force balloon program to detect Soviet nuclear tests by listening to sound waves traveling through the upper atmosphere. During World War II, scientists had discovered the existence of an ocean layer that conducted underwater sound for thousands of miles. They thought that a similar sound channel might exist in the upper atmosphere. If they could put microphones in the upper atmosphere, the U.S. thought they might be able to hear Soviet nuclear tests and even detect ballistic missiles launches heading toward their targets. Designed to test this theory, Project Mogul balloons carried microphones up to the sound channel to “listen” and radio transmitters to send the sound to the ground. At first, project MOGUL flights involved trains of small weather balloons up to 600 feet in length. Later MOGUL flights used the large polyethylene balloons developed for the Navy’s SKYHOOK.

Flying Sandwich Bags – SKYHOOK
SKYHOOK balloons, funded by the Office of Naval Research, were designed to stay at a fixed altitude (~100,000 feet) and carry a payload of thousands of pounds. They were huge, 400 feet high, made possible because the then new material called polyethylene.  These “flying sandwich bags” were built by a company that had experience using this material in packaging – General Mills (the same company that makes Cheerios.)

Sniffing for a Reactor – Nuclear Air Sampling – ASHCAN
In 1957 the Air Force started Project ASHCAN (using SKYHOOK class balloons at 100,0000 feet) to take high altitude air samples and search for nuclear particles and trace gases in fallout from tests in the Soviet Union. For the first time, U.S. intelligence could estimate the amount of plutonium being produced by Soviet weapons production reactors. These balloons were secretly launched from Brazil and the Panama Canal Zone, and from air force bases in the U.S.  Over time, U.S. intelligence also used reconnaissance planes like the U-2, RB-57’s, and C-130 aircraft to collect air samples.

Genetrix Launched from the U.S.S. Valley Forge

Ballooning Over the Soviet Union – GENETRIX
While the nuclear detection balloons did their spying while flying above the U.S. or allied countries, the next series of balloons flew over the Soviet Union.

In the 1950’s, while U.S. reconnaissance aircraft flew around the periphery of the Soviet Union, U.S. military planners still had virtually no information about what was going on in vast areas of the Soviet territory. While there were a few overflights of the Soviet interior in the early 1950’s these missions were extremely risky and couldn’t provide enough information to assess Soviet military strength. Spy satellites and the
U-2 spy planes were still far in the future so the U.S. military became big fans of reconnaissance balloons as a solution to this problem.

In 1950 the Air Force thought that high-altitude balloons might be used to perform photo and ELINT spyflights over the Soviet Union.  They placed aerial reconnaissance cameras on the balloons and ran a series of test programs (code names of GOPHER, MOBY DICK, GRANDSON and GRAYBACK) launching 640 balloons from New Mexico, Montana, the West Coast, Missouri and Georgia. With the tests completed, the program name changed to GENETRIX and was given the designation of Weapons System 119L.

In late 1955 President Eisenhower gave the ok to launch the GENETRIX balloons over the Soviet Union. Hundreds of these balloons took off from secret sites in Norway, Scotland, West Germany, and Turkey carrying a gondola with two reconnaissance cameras.

The United States launched 516 of the GENETRIX balloons but only 44 or so made it out of the Soviet Union.  The rest landed on Soviet farms dumping 600-pound cameras in hayfields. We did get coverage of about 8 percent of the Soviet Union, but politically it created a lot of tension as cameras were popping up on Khrushchev’s desk.  “Oh, another balloon Mr. Premier.”  The Soviets put on a public exhibition of the equipment.

Bigger and Better- MELTING POT
Never one to give up, the military suggested a bigger and better balloon program. Since the GENETRIX balloons flying at 55,000 feet were relatively easy for Soviet fighters to intercept, the new balloons would be built around the Navy SKYHOOK design and fly at 100,000 feet for up to a month. These balloons would carry a new reconnaissance camera, built by the Boston University Physical Research Lab. Three of these balloons were launched in July 1958 from an aircraft carrier off the east coast of Japan (in those months the jet stream at the altitude went west to east.) All three accidentally dropped their gondolas over Communist territory.  President Eisenhower cancelled all the balloon overflights.

Unexpected Consequences – UFO’s in the 1950’s
All these balloon flights had an unexpected consequence on a jittery and paranoid nation in the Cold War. Before sunrise and after sunset, while the Earth below was dark, high altitude balloons were still lit by sunlight, and their plastic skin glowed and appeared to change color with the change in sun angle. Some of the Project Mogul balloon flights were launched from Alamogordo Air Base in New Mexico in 1947, and a few crashed nearby – one near a town called Roswell. The start of the Mogul balloon flights coincided with the first reports of UFO’s. To someone on the ground, these balloons may have looked like UFOs.

Because each of these separate balloon programs were highly compartmentalized programs it’s doubtful that there was any one individual who realized that the sum of the programs were putting thousands of high altitude balloons in the air in the 1950’s. The MOGUL, MOBY DICK, ASHCAN and GENETRIX programs were the CIA/military’s most closely guarded secret projects. Balloon sightings were dismissed with cover story: they were just weather balloons. Even as one part of the military tried to investigate these sightings, the other kept them away from the true purpose of the balloon missions.The reason for the denials – 1) the Soviets could have masked their nuclear tests and filtered their reactor emissions if they knew what we were sampling and 2) GENETRIX balloon flights over the Soviet Union were a violation of international law.

The thousands of classified balloon flights (along with the first flight of the high altitude CIA U-2 reconnaissance plane in 1955) are a possible explanation of of UFO sightings in the 1950’s and the claim of military cover-ups.

The Secret History of Silicon Valley Part 14: Weapons System 117L and Corona

This post is the latest in the “Secret History Series.”  They’ll make much more sense if you read some of the earlier ones for context. See the Secret Historyvideo and slides as well as the bibliography for sources and supplemental reading.

————

The Soviet Union’s detonation of an atomic weapon in 1949 and the start of the Korean War in 1950 fed cold war paranoia in the military and political leadership of the United States. The U.S. intelligence community was determined to find out what was going on inside the Soviet Union. But Soviet secrecy had the country locked down tightly. Desperate for intelligence, the CIA would fly the Lockheed built U-2 spy plane into and over the Soviet Union on 24 missions from 1956-1960 taking photos of its military installations.

But even as the U-2 was beginning its overflights, the U.S. military had concluded that the future of intelligence over the Soviet Union would no longer be with airplanes, but would rely instead on spy satellites orbiting hundreds of miles above in space.

One company in what is today Silicon Valley would build most of them.

Weapons System 117L
In 1956 Lockheed Missiles had just won the contract to build the Polaris Submarine Launched Ballistic Missile (SLBM) for the U.S. Navy in Sunnyvale California, and down in Los Angeles, the U.S. Air Force was on a “crash program” to build land-based Intercontinental Ballistic Missiles (ICBM’s) – the Atlas, Titan and Minuteman.

In 1954, three years before the U.S. or the Soviet Union ever orbited a single satellite, the Air Force asked the RAND corporation to study what satellites could do for the military. Their answer: satellites would enable us to peer over the closed border and inside the Soviet Union.  In 1956, the Air Force organization building our ICBMs was assigned to build a family of satellites to spy on the Soviet Union from space. These satellites would be configured to carry out different reconnaissance missions, including photo reconnaissance, infrared missile warning, and Electronic Intelligence.

This military spy satellite program was called Weapons System 117L.

Spies in Sunnyvale
In 1956 the Air Force gave Lockheed Missiles Division in Sunnyvale the contract to build Weapons System 117L.

Over the next two years Weapons System 117L evolved into a large ambitious program with multiple satellites:

  • The Satellite and Missile Observation System (SAMOS) would take low resolution pictures of the Soviet Union from space and transmit the photos electronically to earth.
  • Another SAMOS version (called Ferrets) would collect electronic intelligence on Soviet radars and transmit the location and radar details electronically to earth.
  • The Missile Detection Alarm System (MIDAS) would provide early warning of the launch of Soviet missiles heading to the U.S. by looking for the hot exhaust (the infrared plume) of rocket engines and transmit the location of the launch electronically to earth.

Crisis
In 1957, a year after Lockheed got the contract to start building WS-117L, the Soviet Union tested an ICBM – one that could carry a nuclear warhead to the United States. They quickly followed with the launch of Sputnik, the first earth-orbiting satellite.

These two events jolted the U.S. intelligence agencies into crisis mode. The Soviet Union claimed they could turn out ICBMs like sausages, and the CIA desperately needed to know how many missiles the Soviets really had and where they were.

Not Good Enough
The photo reconnaissance satellite designed for Weapons System-117 would have let the U.S. military see objects larger than 100-feet from space.  This 100-foot resolution was sufficient for its original mission – to assess how effective the first wave of nuclear attacks on the Soviet Union had been. This “post-strike bomb damage assessment” would allow targets that had been missed by the nuclear armed SAC bombers to be retargeted for follow-on attacks. Because of the immediacy of the information, it required real-time electronic read-out of film developed on orbit.

The problem was that while 100-foot resolution was good enough to locate craters left in cities from space, it wasn’t sufficient for the new mission; to locate the new Soviet ICBM silos and bombers. In addition, the electronic read-out of film developed on orbit was nowhere near ready; it was too complex for its time and technology.

The CIA and Corona
The CIA convinced the Secretary of Defense that the best bet was to build a separate photo reconnaissance satellite carrying a camera that took pictures from space as it passed over the Soviet Union. Film from the camera would be de-orbited in a capsule that could survive the heat of re-entry from space. A parachute would slow the descent of the capsule, which would be snatched in mid-air over the Pacific Ocean by a recovery plane hooking its parachute.  The idea was that this film-based spy satellite would be a short-term project until the Lockheed electronic readout version was in better shape.

This Project was code-named Corona.

The Flamingo Motel
In March 1958 a few unassuming guests checked into the Flamingo Motel in San Mateo, California, near the San Francisco airport.  The CIA, and their primary contractors Lockheed, Kodak, Fairchild and GE, met to hash out their roles and the schedule. The CIA was the customer. Lockheed would integrate and assemble the satellites, Itek (which replaced Fairchild) would provide the camera, Kodak the film, and GE would provide the recovery system that would bring the exposed film through the fiery re-entry back to earth.

After the meeting, the Lockheed manager for Corona rented his own hotel room in Rickey’s Hyatt House in Palo Alto to start to plan the program. He needed to find a factory, separate from the already secret Polaris factory in Sunnyvale. He found an unused facility at the Hiller Helicopter factory on Willow Road in East Palo Alto which became the Lockheed “Advanced Projects” facility.

Deception
To hide the fact that we were launching high-resolution photo reconnaissance satellites over the Soviet Union, the CIA had the Air Force publically cancel the SAMOS photo reconnaissance portion of WS-117L. The program then was resurrected as a “deep black” “compartmentalized” CIA program. When the Corona satellites were launched the CIA used a “cover” story. They called the Corona satellites the  “Discoverer” program and claimed it was an experimental program to develop and test satellite subsystems and explore environmental conditions in space. The film recovery capsule was described as a “biomedical capsule” for the recovery of biological specimens sent into space as an early test of how humans would react to manned spaceflight.

East Palo Alto – Lockheed’s Satellite Factory
The Corona project was run like a startup – a small team, minimum bureaucracy, focussed on a goal and tightly integrated with customer needs. Starting in February 1959, only 12 months after the program began the Air Force launched the first  Corona reconnaissance satellite from the military’s secret spaceport on the California coast at Vandenberg Air Force Base. But the first 13 missions were failures. Yet the program was deemed so important to national security the CIA and the Air Force persevered. And when the first images were received they transformed technical intelligence forever. At first, objects as small as 35-50 feet could be seen from space, with later versions improving to be able to see 6-10 feet objects, over millions of miles of a formally closed country.

Corona Image of Stepnogorsk Bioweapons Facility

Over the life of the program there were 145 Corona launches – 120 were complete or partial successes. During that same decade the Corona program evolved into six different satellite models (the KH-1 thru KH-6) with three different intelligence objectives.

Lockheed turned the Hiller Helicopter plant in East Palo Alto into the control facility for all spy satellites and the Corona spy satellite assembly line – building about one a month and delivering ~145 Corona satellites over the life of the program.

Stanford, Jasons, WS-117L and Corona
In addition to Lockheed, Stanford University also had a hand in Corona. Sidney Drell, then a professor in the Stanford Physics department, was one of the dozen of young scientists who were founding members of the Jason Group (scientists working on national security problems.) His first project was understanding whether a Soviet nuclear burst in space could blind the infrared sensors on the Midas portion of WS-117L.  This research got him invited to be part of the President’s Scientific Advisory Council (PSAC). But it was when the CIA asked him to solve some technical problems with the film on the Corona spacecraft that his career became intertwined with photo reconnaissance. His studies convinced the CIA that photo interpreters needed an order of magnitude improvement in resolution, and Corona had been pushed to its limits. In the late 1960’s Drell, as a member of the Land Panel convinced the CIA that the next generation of photo reconnaissance satellites should transmit their images back to earth in real-time, and use CCD’s rather than film.

For his work, Drell, still at Stanford, was recognized as one of the ten founders of National Reconnaissance by the NRO.

Corona Firsts
While Corona had a number of technological breakthroughs, including the first photoreconnaissance satellite, the first recovery of an object from space, etc. it was Corona imagery in 1961 that told the intelligence community and the new Kennedy administration that the “missile gap” (the supposed Soviet lead in ICBMs) was illusory. By fall of 1961 Soviet Union had a total of six deployed ICBMs – we had ten times as many. In truth, it was the U.S. that had the lead in missiles.

Corona was just the beginning. Overhead reconnaissance would become an integral part of the U.S. intelligence community. Hidden in plain sight, Lockheed and the U.S. intelligence community were just getting started in Silicon Valley.

Next – Agena, Midas, Ferrets and the NRO in Part XV of the Secret History of Silicon Valley.

The Secret History of Silicon Valley Part 13: Lockheed-the Startup with Nuclear Missiles

This post is the latest in the “Secret History Series.”  They’ll make much more sense if you read some of the earlier ones for context. See the Secret History bibliography for sources and supplemental reading.

———————–

The Future is Clear – Microwave Valley Forever
In 1956 Hewlett Packard, back then a maker of test equipment was the valley’s largest electronics employer with 900 employees. But startups were rapidly spinning out of Stanford’s Applied Electronics Lab delivering microwave tubes, components and complete electronic intelligence and electronic warfare systems for the U.S. military and intelligence agencies. The future of the valley was clear – microwaves.

1956 – Change Everything
In 1956 two events would change everything.  At the time neither appeared earthshaking or momentous. Shockley Semiconductor Laboratory, the first semiconductor company in the valley, set up shop in Mountain View. And down the street, Lockheed Missiles Systems Division which would become the valley’s most important startup for the next 20 years, moves its new missile division from Burbank to 275 acres next to the Moffett Naval Air Station in Sunnyvale.

Lockheed – Building Nuclear Missiles in Sunnyvale
Lockheed, an airplane manufacturer, was getting into the missile business by becoming the prime contractor to build the Polaris, a submarine launched ballistic missile (SLBM) developed by the Navy. The Polaris was unique: it would be the first solid-fuel ballistic missile used by the U.S.  Solid fuel solved the safety problem of carrying missiles at sea and underwater and also allowed for instant launch capability. Polaris launched SLBM’s would become the third part of the nuclear triad the U.S. built in the cold war –  the Polaris, the B-52 manned bomber, and the Minuteman, and Titan land-based Intercontinental Ballistic Missiles (ICBMs.)

Each Polaris missile carried a 600 kT nuclear warhead, (later Polaris versions carried three) and each ballistic missile submarine carried 16 of these missiles. 10 years after the program started the United States had built and put to sea 41 ballistic missile submarines carrying 656 Lockheed missiles (28.5 ft high, and weighing 29,000 lbs.) The company acquired a 5,000 acre missile test facility near Santa Cruz, and for years would test it’s missiles in the mountains above the valley.

One can assume that with spares, Lockheed built close to 1000 of these missiles in those ten years.  That’s 100 missiles a year, 8/month or 2 a week flying out of Moffett Field.

You Can Be Sure if It’s Westinghouse
Polaris submarines carried each missile in a separate launch tube. Down the street from Lockheed in Sunnyvale, another American corporate icon, Westinghouse became the developer of the launch tube for the Polaris missile.  To launch missiles from a submarine under water, Westinghouse had to solve several problems. The launch tube had to keep the missile snug in its tube until firing.  It had to eject the missile with sufficient velocity so it would head to the surface for a 100’ feet under water, and it had to protect the submarine when ocean water came rushing in to the now empty launch tube.  Oil-filled shock absorbers solved the cushioning problem and compressed air launched the missile out of the tube through a thin diaphragm that separated the missile from the ocean once the missile launch covers were opened.

Zero to 28,000 people – We Become “Defense Valley”
By 1965 Hewlett Packard, the test and instrumentation company, had grown ten-fold.  From 900 people in 1956 it now employed 9,000. Clearly it must have been the dominant company in the valley? Or perhaps it was Fairchild, the direct descendant of Shockley Semiconductor, now the dominant semiconductor supplier in the valley (80% of its first years business coming from military systems) with ~10,000 people?

Nope, it was the Lockheed Missiles Division, which had zero employees in 1956, now in 1965 had 28,000 employees in Sunnyvale.  The best and the brightest were coming from across the country to the valley south of San Francisco.

And they were not only building Polaris missiles.

By 1965 Lockheed factories in Sunnyvale, Stanford and East Palo Alto were building the most secret spy satellites and rockets you never heard of. While the 1950’s had made us “Microwave Valley,” the growth of Lockheed, Westinghouse and their suppliers had turned us into “Defense Valley.”

In the next post; Spy Satellites in East Palo Alto and Stanford – Corona, WS-117, Samos, Ferret’s and Agena in Part XIV of the Secret History of Silicon Valley.

In Victory: Magnanimity

“In War: Resolution. In Defeat: Defiance. In Victory: Magnanimity. In Peace: Goodwill.”  Winston Churchill

——–

In March I was the keynote at the In-Q-Tel Venture Capital Conference, giving a talk on the Secret History of Silicon Valley. (In-Q-Tel is the Central Intelligence Agency’s Venture Capital firm in Silicon Valley.)
.


The gist of the talk was that the needs of electronic intelligence in the midst of the Cold War and a single Stanford Professor was a key catalyst for entrepreneurship in Silicon Valley.

There were about 300 people in the audience, about 150 from the U.S. intelligence community.

Irony
Last week I was the keynote at the American Business Association of Russian Speaking Professionals.

There were about 300 people in the audience, almost all from the old Soviet Union.

I presented the same Secret History talk, pointing out that the launch of the first Soviet satellite (Sputnik) galvanized the U.S. government to accidentally contribute to the start the Venture Capital industry as we know it.

Afterwards a few of the audience came up and told me stories about Soviet weapons systems that could have won someone an intelligence medal 30 years earlier.

I would have loved to have given the talk to both audiences at the same time.

Close enough.
.

Add to FacebookAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to TwitterAdd to TechnoratiAdd to Yahoo BuzzAdd to Newsvine

The Secret History of Silicon Valley 12: The Rise of “Risk Capital” Part 2

This post is the latest in the “Secret History Series.”  They’ll make much more sense if you watch the video or read some of the earlier posts for context. See the Secret History bibliography for sources and supplemental reading.

This is the second of three posts about the rise of “risk capital” and how it came to be associated with what became Silicon Valley.

———————–

The First Valley IPO’s
Silicon Valley first caught the eyes of east coast investors in the late 1950’s when the valleys first three IPO’s happened: Varian in 1956, Hewlett Packard in 1957, and Ampex in 1958.  These IPOs meant that technology companies didn’t have to get acquired to raise money or get their founders and investors liquid. Interestingly enough, Fred Terman, Dean of Stanford Engineering was tied to all three companies.

Varian made a high power microwave tube called the Klystron, invented by Terman’s students Russell and Sigurd Varian and William Hansen. In 1948 the Varian brothers along with Stanford professors Edward Ginzton and Marvin Chodorow founded Varian Corporation in Palo Alto to produce klystrons for military applications. Fred Terman and David Packard of HP joined Varian’s board.

Terman was also on the board of HP. Terman arranged for a research assistantship to bring his former student, David Packard, back from a job at General Electric in New York to collaborate with William Hewlett, another of Terman’s graduate students. Terman sat on the HP board from 1957-1973.

Ampex made the first tape recorders in the U.S (copied from captured German models,) and Terman was on its board as well. Ampex’s first customer was Bing Crosby who wanted to record his radio programs for rebroadcast (and had exclusive distribution rights.) Ampex business took off when Terman introduced Ampex founder Alex Poniatoff to Joseph and Henry McMicking. The McMicking’s bought 50% of Ampex for $365,000 (some liken this to the first VC investment in the valley.) McMicking and Terman introduced Ampex to the National Security Agency, and Ampex sales boomed when their audio and video recorders became the standard for Electronic Intelligence and telemetry signal collection recorders.

Meanwhile on the West Coast – “The Group”  1950’s
When Ampex was raising its money, in 1952, an employee of Fireman’s Fund in San Francisco, Reid Dennis, managed to put $20,000 in the deal. Five years later Dennis and a small group of angel investors who called themselves “The Group” started investing in new electronics companies being formed in the valley south of San Francisco. These angels who were all working in their day jobs at various financial institutions, would invite startup electronics companies up to San Francisco to pitch their deals and they would invest an average of $75 -$300K per deal.

The Group is worth noting for:

  1. Investing their own private money,
  2. Reid Dennis would found Institutional Venture Partners in 1974
  3. First group specifically investing in the valley’s electronics industry

SBIC Act of 1958
During the cold war the launch of Sputnik-1 by the Soviet Union in 1957 both traumatized and galvanized the United States. Having the first earth satellite launched by a country that been portrayed as a third-world backwater with a bellicose foreign policy shocked the U.S. into believing it was behind the Soviet Union in innovation. In response, one of the many U.S. national initiatives (DARPA, NASA, Space Race, etc.) to spur innovation was a new government agency to fund new companies.  The Small Business Investment Company (SBIC) Act in 1958 guaranteed that for every dollar a bank or financial institution invested in a new company, the U.S. government would invest three (up to $300,000.) So for every dollar that a fund invested, it would have four dollars to invest.

While SBIC’s were set up around the country, companies in Northern California including Bank of America, Firemans Fund and American Express (Reid Dennis of the Group ran theirs), began to set up SBIC funds to tap the emerging microwave and new semiconductor startups setting up shop south of San Francisco. And for the first time, private companies like Continental Capital, Pitch Johnson & Bill Draper and Sutter Hill were formed to take advantage of the government largesse from the SBA. Like all government programs, the SBIC was fond of paperwork, but it began to formalize, professionalize and standardize the way investors evaluated risk.

SBIC’s were worth noting for:

  1. The good news – government money for startups encouraged a “risk capital” culture at large financial institutions.
  2. The better news – government money encouraged private companies to form to invest in new startups
  3. The bad news – the government was more interested in rules, regulations and accounting then startups (because some SBIC’s saw the government funds as a license to steal)
  4. By 1968 over 600 SBIC funds provided 75% of all venture funding in the U.S.
  5. In 1988 after the rise of the limited partnership that number would be 7%.

Limited Partnerships
By the end of the 1950’s there was still no clear consensus about how to best organize an investment company for risky ventures. Was it like George Doriot’s ARD venture fund – a publicly traded closed end mutual fund? Was it using government money as a private SBIC firm?  Or was it some other form of organization? Many investors weren’t interested in working for a large company for a salary and bonus, and most hated the paperwork and salary limitations that the SBIC imposed. Was there some other structure?

The limited partnership offered one way to structure an investment company. The fund would have limited life. It would charge its investors annual “management fees” to pay for the firm’s salaries, building, etc. In a typical venture fund, the partners receive a 2% management fee.

But the biggest innovation was the “carried interest” (called the “carry”.) This is where the partners would make their money. They would get a share of the profits of the fund (typically 20%.) For the first time venture investors would have a very strong performance incentive.

Venture Capital In 1958 General William Draper, Rowan Gaither (founder of the RAND corporation) and Fred Anderson (a retired Air Force general) founded Draper, Gaither and Anderson, Silicon Valley’s (and possible the worlds) first limited partnership. The venture firm was funded by Laurance Rockefeller and Lazard Freres, but after some dispute lost to the sands of time, Rockefeller pulled his financing, and the firm was dissolved after the first fund.

The first limited partnership that lasted for a while was formed by Davis and Rock in 1961. Arthur Rock, an investment banker at Hayden Stone in New York (who helped broker the financing of Fairchild) moved out to San Francisco in 1961 and partnered with Tommy Davis. Davis (an ex-WWII OSS agent) then a VP at the Kern Land Company got involved with investing in technology companies through Fred Terman. Davis’s first investment in 1957 was Watkins-Johnson (the maker of microwave Traveling Wave Tubes for electronic intelligence systems) where he sat on its board with Fred Terman. Rock and Davis would raise a $5M fund from east coast institutions and while they invested only $3.4 million of it by the time they dissolved their partnership in 1968 – they returned $90 million to their limited partners – a 54% compound growth rate.

Limited partnerships are worth noting for:

  1. By the 1970’s the limited partnership would become the preferred organizational form for venture investors
  2. The “carried interest” (the “carry”) assured that the venture partners would only make real money if their investments were successful. Aligning their interests with their limited investors and the entrepreneurs they were investing in.
  3. The limited life of each fund; 7-10 years of which 3-5 years would be spent actively investing, focused the firms on investments that could reasonably expect to have “exits” during the life of the fund.
  4. The limited life of each fund allowed venture firms to be flexible. They could change the split of the carry in follow on funds, add partners with carry in subsequent funds, change investing strategy and focus in follow-on funds, etc.

Silicon Innovation Collides with Risk Capital
Lacking a “risk capital” infrastructure in the 1950’s military contracts and traditional bank loans were the only options microwave startups had for capital. The first semiconductor companies couldn’t even get that – Shockley and Fairchild could only be funded through corporate partners. But by the 1960’s the tidal wave of semiconductor startups would find a valley with a growing number of SBIC backed venture firms and limited partnerships.

A wave of silicon innovation was about to meet a pile of risk capital.

More on this in Part XIII of the Secret History of Silicon Valley.

The Secret History of Silicon Valley 11: The Rise of “Risk Capital” Part 1

This post is the latest in the “Secret History Series.”  They’ll make much more sense if you watch the video or read some of the earlier posts for context. See the Secret History bibliography for sources and supplemental reading.

This is the first of two posts about the rise of “risk capital” and how it came to be associated with what became Silicon Valley.
———————–

Building Blocks of Entrepreneurship
By the mid 1950’s the groundwork for a culture and environment of entrepreneurship were taking shape on the east and west coasts of the United States. Stanford and MIT were building on the technology breakthroughs of World War II and graduating a generation of engineers into a consumer and cold war economy that seemed limitless. Communication between scientists, engineers and corporations were relatively open, and ideas flowed freely. There was an emerging culture of cooperation and entrepreneurial spirit.

Slide1

At Stanford, Dean of Engineering Fred Terman wanted companies outside of the university to take Stanford’s prototype microwave tubes and electronic intelligence systems and build production volumes for the military. While existing companies took some of the business, often it was a graduate student or professor who started a new company. The motivation in the mid 1950’s for these new startups was a crisis – we were in the midst of the cold war and the United States military and intelligence agencies were rearming as fast as they could.

Yet one of the most remarkable things about the boom in microwave and silicon startups occurring in the 1950’s and 60’s was that it was done without venture capital. There was none.  Funding for the companies spinning out of Stanford’s engineering department in the 1950’s benefited from the tight integration and web of relationships between Fred Terman, Stanford, the U.S. military and intelligence agencies and defense contractors.

These technology startups had no risk capital – just customers/purchase orders from government/military/intelligence agencies.

This post is about the rise of “risk capital” and how it came to be associated with what became Silicon Valley.

Risk Capital via Family Money   1940’s
During the 1930’s, the heirs to U.S. family fortunes made in the late 19th century – Rockefeller, Whitney, Bessemer –  started to dabble in personal investments in new, risky ventures. Post World War II this generation recognized that:

  1. Technology spin-offs coming out of WWII military research and development could lead to new, profitable companies
  2. Entrepreneurs attempting to commercialize these new technologies could not get funding; (commercial and investment banks didn’t fund new companies, just the expansion of existing firms,) and existing companies would buy up entrepreneurs and their ideas, not fund them
  3. There was no organized company to seek out and evaluate new venture ventures, manage investments in them and nurture their growth.

Several wealthy families in the U.S. set up companies to do just that – find and formalize investments in new and emerging industries.

  • In 1946 Jock Whitney started J.H. Whitney Company by writing a personal check for $5M and hiring Benno Schmidt as the first partner (Schmidt turned Whitney’s description of “private adventure capital” into the term “venture capital”).
Jock Whitney writes himself a check to fund J.H. Whitney Co.

Jock Whitney writes himself a check to fund J.H. Whitney Co.

  • That same year Laurance Rockefeller founded Rockefeller Brothers, Inc., with a check for $1.5 million.  (23 years later they would rename the firm Venrock.)
  • Bessemer Securities, set up to invest the Phipps family fortune (Phipps was Andrew Carnegie’s partner,)

These early family money efforts are worth noting for:

  1. They were “risk capital,” investing where others feared
  2. They invested in a wide variety of new industries – from orange juice to airplanes
  3. They almost exclusively focused on the East Coast
  4. They used family money as the source of their investment funds

East Coast Venture Capital Experiments
In 1946, George Doriot, founded what is considered the first “venture capital firm” – American Research & Development (ARD). A Harvard Business School professor and early evangelist for entrepreneurs and entrepreneurship, Doriot was the Fred Terman of the East Coast. Doroit had the right idea with ARD (funding startups out of MIT and Harvard and raising money from outsiders who weren’t part of a private family) but picked the wrong model for raising capital for his firm. ARD was a publicly traded venture capital firm (raising $3.5 Million in 1946 as a closed-end mutual fund) which meant ARD was regulated by the Securities and Exchange Commission (SEC.) For reasons too numerous to mention here, this turned out to be a very bad idea. (It would be another three decades of experimentation before the majority of venture firms organized as limited partnerships.)

The region around Boston’s Route 128 would boom in the 1950’s-70’s with technology startups, many of them funded by ARD. ARD’s most famous investment was the $70,000 they put into Digital Equipment Corporation (DEC) in 1957 for 77% of the company that was worth hundreds of millions by its 1968 IPO. It wasn’t until the rise of the semiconductor industry and a unique startup culture in Silicon Valley that entrepreneurship became associated with the West Coast.

Georges Doriot the first VC

Georges Doriot the first VC

Doriot and American Research and Development are worth noting for:

  1. Some of the very early VC’s got their venture capital education at Harvard as Doriot’s students (Arthur Rock, Peter Crisp, Charles Waite.)
  2. ARD was almost exclusively focused on the East Coast
  3. ARD proved that institutional investors, not just family money had an appetite for investing into venture capital firms.

Corporate Finance
One of the ironies in Silicon Valley is that the two companies which gave birth to its entire semiconductor industry weren’t funded by venture capital. Since neither of these startups were yet doing any business with the military—and venture capital as we know it today did not exist, they had to look elsewhere for funding. Instead, in 1956/57, Shockley Semiconductor Laboratory and Fairchild Semiconductor were both funded by corporate partners —  Shockley by Beckman Instruments, Fairchild by Fairchild Camera and Instrument.

More on the rise of SBIC’s, Limited Partnerships and the venture capital industry as we know it today in Part XII of the Secret History of Silicon Valley here.

The End of Innocence

I love TechCrunch. If you’re a startup raising money or just want to see your name online, there’s not a better blog on the web.  Reading this TechCrunch post made me remember the first time I saw someone confront a worldview they didn’t expect.

TechCrunch PRDiscovering that your worldview is wrong or mistaken can be a life-changing event. It’s part of growing up but can happen at any age. What you do when it happens shapes who you’ll become.

Dinner in a Strange Land
When I was in my mid 20’s working at ESL, I was sent overseas to a customer site where the customers were our three-letter intelligence agencies. All of us knew who they were, understood how important this site was for our country, and proud of the work we were doing. (Their national technical means of verification made the world a safer place and hastened the end of the Soviet Union and the Cold War.)

As a single guy, I got to live in a motel-like room on the site while the married guys lived in town in houses and tried to blend in with the locals. When asked what they did, they said they worked at “the xxx research facility.”  (Of course the locals translated that to “oh do you work for the yyy or zzz intelligence agency?”)

One warm summer evening I got invited over to the house of a married couple from my company for a BBQ and after-dinner entertainment – drinking mass quantities of the local beer. The quintessential California couple, they stood out in our crowd as the engineer (in his late 20’s, respected by his peers and the customer) had hair down to his shoulders, sharply contrasting with the military crewcuts of the customers and most of the other contractors.

His wife, about my age, could have been a poster child for the stereotypical California hippie surfer, with politics that matched her style – antiwar, anti government, antiestablishment.

One of the rules in the business was that you didn’t tell your spouse, girlfriend, significant other who you worked for or what you worked on – ever. It was always a welcome change of pace to leave the brown of the unchanging desert and travel into town and have dinner with them and have a non-technical conversation about books, theater, politics, travel, etc. But it was a bit incongruous to hear her get wound up and rail against our government and the very people we were all working for. Her husband would look at me out the corner of his eyes and then we’d segue the conversation to some other topic.

That evening I was there with three other couples cooking over the barbie in their backyard. After night fell we reconvened in their living room as we continued to go through the local beer. The conversation happened to hit on politics and culture and my friend’s’ wife innocently offered up she had lived in a commune in California. Well that created a bit of alcohol-fueled cross-cultural disconnect and heated discussion.

Until one of the other wives changed a few lives forever with a slip of the tongue.

Tell Me it Isn’t True
One of the other wives asked, “Well what would your friends in the commune think of you now that your husband is working for intelligence agencies x and y?”

As soon as the words came out of her mouth, I felt time slow down. The other couples laughed for about half a second expecting my friend’s wife to do so as well. But instead the look on her face went from puzzlement in processing the question, to concentration, as she was thinking and correlating past questions she had about who exactly her husband had been working for. It seemed like forever before she asked with a look of confusion, “What do you mean agencies x and y?”

The laughter in the room stopped way too soon, and the room got deathly quiet. Her face slowly went from a look of puzzlement to betrayal to horror as she realized that that the drunken silence, the dirty looks from other husbands to the wife who made the agency comment, and the wives now staring at their shoes was an answer.

She had married someone who never told her who he was really working for. She was living in a lie with people she hated. In less than a minute her entire worldview had shattered and coming apart in front of us, she started screaming.

This probably took no more than 10 seconds, but watching her face, it felt like hours.

I don’t remember how we all got out of the house or how I got back to the site, but to this day I still remember standing on her lawn staring at strange constellations in the night sky as she was screaming to her husband, “Tell me it isn’t true!”

The next day the site supervisor told me that my friend and his wife had been put on the next plane out of country and sent home (sedated) along with the other couple that made the comment. By the time I came back to the United States, he was gone from the company.

It’s been thirty years, but every once an awhile I still wonder what happened to the rest of their lives.

———-

The End of Innocence
In much smaller ways I’ve watched my children and now my students discover that their worldview is wrong, mistaken or naive. I’ve watched as they realize there’s no Santa Claus and Tooth Fairy; the world has injustice, hypocrisy and inequality; capitalism and politics don’t work like the textbooks and money moves the system; you can’t opt out of dying, and without regulation people will try to “game” whatever system you put in place.

Learning to accept the things you can’t change, finding the courage to change the things you can and acquiring the common sense to know the difference, is part of growing up.

While I love TechCrunch, the post and the quote about the PR agency (“one PR firm has discovered a dynamite strategy, throw ethics out the window”) left me wondering; how do PR agencies interact with TechCrunch and other blog and review sites? Is this behavior an outlier or is it the norm in the PR industry?

Or is it just someones end of innocence?

Listen to the blog post here

Download the podcast here or here

The Secret History of Silicon Valley Part X: Stanford Crosses the Rubicon

This post is the latest in the “Secret History Series.”  They’ll make much more sense if you read some of the earlier ones for context. See the Secret History bibliography for sources and supplemental reading.

———————–

Swords Into Plowshares
After the end of World War II, returning veterans were happy to beat swords into plowshares (and microwave tubes) on the Stanford campus. From 1946 until 1950, Stanford’s Electronic Research Lab conducted basic research in microwave tubes.  Although this reseearch would lead to the development of the Backward Wave Oscillator and Traveling Wave Tube for military applications, Stanford was building tubes and circuits not entire systems.  The labs basic research was done by graduate students or Ph.Ds doing postdoctoral internships, supervised by faculty members or hired staff (many from Fred Terman’s WWII Electronic Warfare lab.)

In 1949, with the detection of the first Soviet nuclear weapons test, the Iron Curtain falling across Europe and the fall of China to the Communists, Cold War paranoia drove the U.S. military to rearm and mobilize.

Source: Center for Arms Control and Non-Proliferation (in constant 2009 $’s)

Source: Center for Arms Control and Non-Proliferation (in constant 2009 $’s)

We’ll Do Great in the Next War
Early in 1950, just months before the outbreak of the Korean War the Office of Naval Research asked Fred Terman to build an Applied electronics program for electronic warfare. All branches of the military (the Air Force and Army would fund the program as well) wanted Stanford to build prototypes of electronic intelligence and electronic warfare systems that could be put into production by partners in industry. The Navy informs Terman that, “money was not a problem but time was.”

Pitching the idea to the President of Stanford, Terman enthusiastically said, “In the event of all-out war, Stanford would become one of the giant electronic research centers…”  (A bit optimistic about the outcome perhaps, given that both the U.S. and the Soviet Union had nuclear weapons at this point.)

Crossing the Rubicon – The Applied Electronics Lab
Setting up a separate Applied Electronics Lab for military funded programs doubled the size of the electronics program at Stanford. The new Applied Electronics Laboratory was built with Navy money and a gift from Hewlett-Packard. With the memories of WWII only five years old, and the Cold War now a shooting war in Korea, there was very little discussion (or dissension) about turning a university into a center for the production of military intelligence and electronic warfare systems.

The work in the applied program focused in fields in which faculty members or senior research associates specialized.  Many of the other staff in the applied program were full-time employees hired to work solely on these military programs.

ELINT, Jammers and OTH
The Applied Electronics Lab used the ideas and discoveries (on microwave tubes and receiver circuits) from Terman’s basic research program in the Electronic Research Lab. The Applied Lab would build prototypes of complete systems such as Electronic Intelligence systems, Electronic Warfare Jammers, and Over the Horizon Radar. The Applied Electronics Lab also continued work on the Klystron, pushing the tube to produce megawatts in transmitted power. (Stanford designed Klystrons producing 2½ Megawatts were manufactured by Varian and Litton would power the radar in the BMEWS (Ballistic Missile Early Warning System) built at the height of the cold war.) The close tie between the two labs was a unique aspect of the Stanford Lab. Stanford had a Customer Development loop going on inside their own lab. The discoveries in tube and circuit research suggested new electronic intelligence and countermeasure techniques and systems; in turn the needs of the Applied Lab pushed tube and circuit development.  With the Applied Electronics Lab Stanford was becoming something akin to a federal or corporate lab run under university contract.  The university found government contracts profitable as the government reimbursed their overhead charges (their indirect costs.) This means they could fund other non-military academic programs from this overhead.

The Stanford Applied Electronics Lab built prototypes which were handed off to the military labs for their evaluation. Subsequently military labs would contract with companies to build the devices in volume. In some cases, branches of the military contracted directly with Stanford which worked with local contractors in Silicon Valley to build these components or systems for the military. The prototype ELINT receivers built by the Applied Electronics Lab used the Stanford Traveling Wave Tubes. They quickly went into production at Sylvania Electronic Defense Labs down the street in Mountain View and Hallicrafters in Chicago. Later versions would be built by numerous industry contractors and installed on the fleet of ELINT planes orbiting the Soviet Union. These traveling wave tubes would also become the heart of the panoramic receiver used on the B-52 by the electronic warfare officer to get the bomber through the Soviet Air Defense system.

Jammers built by the Stanford Applied Electronics Lab used the Stanford Backward Wave Oscillators to produce high power microwaves. Unlike the simple noise jammers used in World War II, Soviet radars were becoming more sophisticated and newer designs were fairly immune to noise. Instead the jamming signal needed to be much smarter and have a deep understanding of how the targeted radar worked. Taking the information gleaned from our ELINT aircraft, Stanford built prototypes of jammers modulated with two new deception jamming techniques – angle jamming and range-gate pull-off. Some form of these deception jammers would eventually find their way into most electronic warfare defense systems used in the Cold War; first in the U-2, A-12 and SR-71. (Ironically the B-52 bomber, which would become the airborne leg of our nuclear triad, would use dumb noise jammers for two more decades – the Air Force opting to put the smart jammers on the B-58 and B-70, high altitude supersonic bombers – one soon obsolete and other never made it into production.)

The last major area of research that the Applied Electronics Lab group investigated was how radio signals propagated within the earth’s ionosphere. Over the next fifteen years this Radio Science Laboratory would receive the most funding of all departments in the lab (from the CIA) to build a ground based ELINT system. They would build and deploy two Over The Horizon Radar (OTHR) systems to detect Soviet and Chinese ballistic missile tests using ground based radars.

Guards at the DoorStanford Joins the Cold War
In 1953 the Office of Naval Research told Terman that all military-funded projects (basic or applied, classified or not) needed to be in their own separate physical building. As a result Stanford moved the Applied work from the Electronics Research Lab into its own building.

In 1955, the pretense of keeping unclassified and classified work separate imposed too much of an administrative overhead and Stanford merged the Applied Electronics Lab and the Electronics Research Laboratory into the Systems Engineering Lab. The Applied Electronics portion of the lab was now the size of a small company.  It had 100 people, 18 of them full time faculty, 33 research associates and assistants and 33 other tube technicians, draftsman, machinists, etc. Over half this lab would hold clearances for military secrets. (Top Secret: Terman, Harris, McGhie, Secret: 44 others, Confidential: 8 others. Terman, Harris and Rambo also had Atomic Energy Commission “Q” clearances.)  Some students who were getting their engineering graduate degrees wrote masters and PhD thesis that were classified. Unless you had the proper clearances you couldn’t read them.  Terman and Stanford had just made a major bet on the cold war, and Stanford ranked sixth among university defense contractors.

A security guard was stationed at the door of the Applied Electronics Lab to ensure that only those with proper security clearance could enter. The law of unintended consequences meant that this most casual addition in front of a university building would result in the occupation and destruction of the lab (and its twin at MIT) and the end of the program 14 years later.  (More on this in a later post.)

Show and Tell – The Stanford ELINT and Electronic Warfare Contractors Meeting
During a typical year, the Applied Electronics Lab would host classified visits from military labs and defense contractors. By early 1950’s Stanford started holding a two day meeting for contractors and the military.

 

1955 Stanford Contractors Meeting

1955 Stanford Contractors Meeting

 

The 1955 attendee list gives you a feeling of the “who’s who” of the military/industrial establishment: RCA, GE, Motorola, AIL, Bendix, Convair, Mepar, Crosley, Westinghouse, McDonnell Aircraft, Douglas Aircraft, Boeing, Lockheed, Hughes Aircraft, North American, Bell Aircraft, Glen Martin, Ryan Aeronautics, Farnsworth, Sperry, Litton, Polarad, Hallicrafters, Varian, Emerson, Dumont, Maxson, Collins Radio.  Other universities doing classified ELINT and Electronic Warfare work attended including University of Michigan, Georgia Institute of Technology and Cornell. Over a hundred government contractors reviewed Stanford’s work on tubes and systems.

Stanford Contractors Meeting 1955 Attendees

Stanford Contractors Meeting 1955 Attendees

This was a classified conference at a university, the contractors not only got to hear the conference lectures, but also visited exhibits on the devices and systems the lab had built. The lab would repeat the conference the following week for government agencies doing military work.

Barely noticed at the 1955 conference, a year before the first transistor company opened in Silicon Valley, one of the sessions described how to use a new device called a“transistor” to build wide-band amplifiers. (Terman had sent faculty and graduate students to the University of Illinois in 1953 to learn transistor physics.)

The World Turned Upside Down
The Applied Electronics Lab solidified Stanford’s lead as one of, if not the place in the U.S. military for advanced thinking in ELINT and Electronic Warfare.  It would turn on its head the relationship of universities and corporations.

Traditionally universities chased corporations for funding and patronage, but the military’s dependence on Stanford’s and Fred Terman’s judgment turned that relationship on its head.  Now the military was listening to Terman’s advice about which military contractors should get the order for to mass produce the Stanford systems.  The contractors were now dependent on Stanford.

Terman the Rainmaker
During the 1950’s Fred Terman was an advisor to every major branch of the U.S. military. He was on the Army Signal Corps R&D Advisory Council, the Air Force Electronic Countermeasures Scientific Advisory board, a Trustee of the Institute of Defense Analysis, the Naval Research Advisory Committee, the Defense Science Board, and a consultant to the President’s Science Advisory Committee. His commercial activities had him on the board of directors of HP, Watkins-Johnson, Ampex, and Director and Vice Chairman of SRI.  It’s amazing this guy ever slept.  Terman was the ultimate networking machine for Stanford and its military contracts.

Stanford Industrial Park – Microwave Valley Booms
By the early 1950’s many of the corporations that attended the yearly Stanford Electronic Warfare conferences would establish research labs centered around Stanford for just this reason – to learn from Stanford’s basic and applied research and get a piece of the ELINT and Electronic Warfare contracting pie.

Stanford Industrial Park was the first technology office park set up to house local and out of state microwave and electronics startups. First occupied in 1953 it would include Varian, Watkins Johnson, Admiral, HP, General Electric, Kodak, Lockheed.  Other east coast companies which established branches in Microwave valley in the 1950’s included IBM, Sylvania, Philco, Zenith and ITT.

The Future is Clear – Microwave Valley Forever
By 1956 Fred Terman had every right to be pleased with what he had helped build in the last ten years in and around Stanford.  The Stanford Electronics Lab was now the center of ELINT and Electronic Warfare.

Startups were sprouting all over Microwave Valley delivering microwave tubes and complete military systems, slowiy replacing the orchards and fruit trees. Granger Associates was a 1956 startup founded by Bill Ayer, a graduate student in the Applied Electronics Radioscience Lab, and John Granger, a former RRL researcher, building ELINT and Electronic Warfare systems (the Granger jammer was carried on the U-2.) Four years later Ayer and another Granger engineer would leave Granger and found one of the preeminent electronic warfare and ELINT companies: Applied Technologies.

The future of the valley was clear – microwaves.

1956 – Change Everything
Yet in 1956 two events would change everything.  At the time neither appeared earthshaking or momentous. First, a Bell Labs researcher who had grown up in Palo Alto, had his own interesting World War II career, and recently served as a military advisor on cold war weapons systems, decided to follow Fred Terman’s advice to locate his semiconductor company near Stanford.

The second was when a Southern Californian aircraft company decided to break into the missiles and space field by partnering with Stanford electronics expertise. It moved its electronics research group from Burbank to the new Stanford Industrial Park and built its manufacturing facility in Sunnyvale.

Shockley Semiconductor Laboratory and Lockheed Missiles Systems Division would change everything. Read about it in Part XI of the Secret History of Silicon Valley here.

Follow

Get every new post delivered to your Inbox.

Join 149,972 other followers