Hacking For Defense In Silicon Valley

Lead, follow or get the heck out of the way

In peacetime the U.S. military is an immovable and inflexible bureaucracy. In wartime it can adapt and adopt organizational change with startling speed.

BMNT, a new Silicon Valley company, is combining the Lean Methods it learned in combat with the technology expertise and speed of startups.

—–

But first some history…

World War II
In World War II the U.S. government reengineered its approach to building weapons. In a major break from the past, where the military designed all its own weapons, 10,000 scientists and engineers from academia worked in civilian-run weapons labs (most headquartered in universities) in an organization called the Office of Scientific Research and Development (OSRD).

OSRD was tasked to develop military weapons systems and solve military problems but had wide autonomy to determine how to accomplish its tasks and organize its labs. (The weapons were then manufactured in volume by U.S. corporations.)

OSRD

The OSRD developed advanced electronics: radar, electronic warfare, rockets, sonar, proximity fuse, Napalm, the Bazooka and new drugs such as penicillin and cures for malaria. One OSRD project – the Manhattan Project  – the development of the atomic bomb – was so secret and important that it was spun off as a separate program. The University of California managed research and development of the bomb design at Los Alamos while the US Army managed the Los Alamos facilities and the overall administration of the project.

After the war the U.S. split up the functions of the OSRD. Nuclear weapons went to the new Atomic Energy Commission (AEC), basic weapons systems research went to the Department of Defense (DOD) and all U.S. biomedical and health research went back to the National Institutes of Health (NIH). In 1950, government support of basic science research in U.S. universities became the charter of the National Science Foundation (NSF). Each of these independent research organizations would support a mix of basic and applied research.

The Cold War
During the Cold War the U.S. and the Soviet Union faced off with a nuclear deterrence policy called mutually assured destruction (aptly named MAD.) But to fight a conventional war in Europe, Soviet forces had built a 3 to 1 advantage in tanks, artillery, armored personnel carriers, and soldiers. In response the U.S. developed a new strategy in the late 1970’s to counter the Warsaw Pact. Instead of matching the U.S.S.R. tank for tank or solider to solider, the U.S. saw that it could change the game and take advantage of a lead we had that was getting longer every day – using our computer and chip technology to aggressively build a new generation of weapons that the Soviet Union could not. 

At the heart of this “offset strategy” was “precision strike,” – building stealth aircraft to deliver precision guided munitions unseen by enemy radar, and designing intelligence and reconnaissance systems that would target for them. The offset strategy was smart weapons, smart sensors, and stealth using silicon chips, electronics and computers that only the U.S. could design and produce.

By the mid-1980’s the Soviet military was struggling to keep up with this “revolution in military affairs. The announcement of the Strategic Defense Initiative (Star Wars) further destabilized the Soviet Union.

The Gulf Wars
When I first started teaching customer development (searching, validating and executing a business model), one of my students pointed out that customer development was similar to the theory of a military strategist, John Boyd. In the 1960’s, Boyd, who was a fighter pilot, proposed that instead of executing a fixed plan, wars would be won by those who can Observe, Orient, Decide and Act (the OODA Loop.) After being ignored for decades, Boyd’s OODA Loop drove the U.S. war fighting strategy in both Gulf Wars. The OODA Loop was the Lean Startup philosophy before lean.

Large ooda loop

Iraq, Afghanistan and the Army’s Rapid Equipping Force (REF)
In Afghanistan in 2002 U.S. soldiers were tasked to clear caves that the Taliban used to store equipment. Many of the caves still had Taliban fighters inside while others had been booby-trapped. To clear the caves soldiers threw grappling hooks inside then pulled the hooks out to catch trip-wires and explode bombs. But often this technique did not work and soldiers died. The Army realized they needed to do something more effective. They gave the problem to Colonel Bruce Jette, and 90 days and $750,000 later he had bypassed the existing Army acquisition system and bought existing robots from companies. Exponent provided the PackBot and the Marcbot and deployed them to the field.

From that day the Army’s Rapid Equipping Force (REF) was born.

The REF’s goal is to deliver technology solutions to front-line soldiers in days and weeks, instead of months and years either by using solutions from previous REF efforts or existing government- or commercial-off-the-shelf technologies purchased with a government credit card.

The REF had permission to shortcut the detailed 100+ page requirements documents used by the defense acquisition process. It developed a ten-line short form that listed the most important parts of the requirement. The REF also had its own budget, which it could use to acquire equipment.

Soon the REF was sending teams of civilian and military subject matter experts out into the field to discover what they needed. REF expanded its operations to include forward teams in Kuwait and Iraq to provide technology to fill capability gaps and to counter the highest priority threats.

By the end of 2007, the REF had delivered more than 550 types of equipment and more than 75,000 individual items. The average time from receiving a request from the field to delivering a solution to the soldiers was 111 days.

In 2010 Colonel Peter Newell took over the REF and turned its focus into what we would call a Lean Startup. Pete Newell
Newell insisted that REF started with a deep understanding of soldiers’ problems
 before purchasing a proposed solution. Newell found that four problems accounted for two-thirds of REF requirements:

  1. defeating roadside bombs
  2. supporting soldiers on foot with communications and load carrying devices
  3. providing soldiers with timely intelligence, surveillance, and reconnaissance in combat
  4. supplying and protecting small isolated combat outposts

He came up with his version of the OODA loop to explain to people how REF should behave.

REF Problem Solving Cycle

To get closer to his customers, Newell commissioned three mobile laboratories that were airlifted to forward operating bases. These labs included a Computer Numerical Control milling machine and 3-D printers for rapid prototyping.REF Mobile Lab

Hacking For Defense (H4D)
When Colonel Peter Newell left the Army, he came to Silicon Valley at the urging of a friend and fellow retired Army Colonel, Joe Felter, a Stanford PhD who moved to Palo Alto and Stanford after a career in the Special Forces. Newell accepted Felter’s invitation to join a company he had originally established. BMNT does for the Department of Energy, the Department of Defense and the Intelligence Community what the REF did for the U.S. Army – build teams that deliver solutions to complex problems, with access to the entire network of suppliers and partners that Newell and Felter developed throughout their careers.

To tap into the innovation of Silicon Valley, BMNT, in collaboration with Stanford’s Preventive Defense Project organized Hacking For Defense (H4D) – a series of hackathons – to help the Department of Defense do four things:

  1. Identify new ideas that will solve problems the military expects to see in the future
  2. Map those ideas to the technology that could be used to solve them
  3. Recruit the people who can make it happen
  4. Show the DoD how to engage Silicon Valley with challenging problems and build networks of people to solve them

BMNT‘s first hackathon, “Hacking the Supply Chain,” brought together diverse teams of technologists and users to provide solutions to the questions: How do you supply troops which can be sent on short-notice, for long periods to places where there are no existing bases or supplies? How might we create the most resilient and efficient supply chain possible for our forward-deployed land forces in 2025?

“Hacking the Supply Chain” is focused on:

  • energy and power generation
  • potable water and field expedient sewage systems
  • advanced manufacturing and repair maintenance technologies
  • training and readiness technologies
  • command, control, computers, and communications technologies

In mid-April, the ideas generated at BMNT‘s first hackathon will be presented to a panel of experienced senior entrepreneurs, engineers, and military and government officials and then sent to the Department of Defense with specific recommendations on the technologies with potential to support them.

Ultimately Newell and Felter say they want to use BMNT to create an “insurgency” in Silicon Valley to get cutting-edge innovation into the organizations defending our country. (Click here for information on Hacking for Defense events.)

Hacking the Prime’s
In reality, what BMNT is trying to fix is the way the Department of Defense acquires radically new technology and ideas. While DARPA tries to fill that need, today the primary conduits for bringing new technology to the government are the prime contractors (e.g., Lockheed, Boeing, Raytheon, Northrup Grumman, L3, General Dynamics, et al.) But most of these contractors focus on fulfilling existing technology needs that can be profitable.

If a startup wants to provide new technology to the Department of Defense (DoD),  they have to sell through the prime contractors who own the relationships with the DoD. Most startups and innovative companies are unwilling to risk exposing their Intellectual Property and go through the paperwork of dealing with the government, so they choose not to pursue government ventures. In this way, the primes artificially restrict DoD’s technological funnel.  (Palantir is the most visible Silicon Valley insurgent in this space.)

Today, incentives for bringing innovation into the government with speed and urgency are not aligned with the government acquisition, budgeting, and requirements process. As a result, the DoD fails to acquire truly innovative technologies (much less paradigm-changing technologies) in a timely fashion.

Lessons Learned

  • In peacetime the U.S. military is an immovable and inflexible bureaucracy
  • In wartime it can adapt and adopt organizational change with startling speed
  • The Rapid Equipping Force operated with speed and urgency to deliver solutions to real customer problems
  • BMNT and Hacking for Defense are trying to bring this same process to Silicon Valley

Fear of Failure and Lack of Speed In a Large Corporation

I just spent a day working with Bob, the Chief Innovation Officer of a very smart large company I’ll call Acme Widgets.

Bob summarized Acme’s impediments to innovation. “At our company we have a culture that fears failure. A failed project is considered a negative to a corporate career. As a result, few people want to start a project that might not succeed. And worse, even if someone does manage to start something new, our management structure has so many financial, legal and HR hurdles that every initiative needs to match our existing business financial metrics, processes and procedures. So we end up in “paralysis by analysis” – moving slowly to ensure we don’t make mistakes and that everyone signs off on every idea (so we can spread the collective blame if it fails). And when we do make bets, they’re small bets on incremental products or acquisitions that simply add to the bottom line.”

Bob looked wistful, “Our founders built a company known for taking risks and moving fast. Now we’re known for “making the numbers,” living on our past successes. More agile competitors are starting to eat into our business. How can we restart our innovation culture?”

—-

What Drives Innovation?
I pointed out to Bob the irony – in a large company “fear of failure” inhibits speed and risk taking while in a startup “fear of failure” drives speed and urgency.

If we could understand the root cause of that difference, I said, we could help Acme build a system for continuous innovation.

I suggested the best place to start the conversation is with the 21st century definition of a startup: A startup is a temporary organization designed to search for a repeatable and scalable business model.

Startups have finite time and resources to find product/market fit before they run out of money. Therefore startups trade off certainty for speed, adopting “good enough decision making” and iterating and pivoting as they fail, learn, and discover their business model.

The corollary for a large company is: A company is a permanent organization designed to execute a repeatable and scalable business model.

That means in their core business, large companies have a series of knowns. They’ve found product/market fit (what products customers want to buy). They’ve learned the best distribution channel to get the product from their company to the customer. They’ve figured out the revenue model (subscription, license, direct sale, etc.) and how to price the product. They know the activities, resources and partners (manufacturing, regulation, IP, supply chain, etc.) – and the costs to deliver the product/service and have well defined product development and product management tools that emphasize the linear nature of shipping products to existing customers. There are financial metrics (Return on Investment, Hurdle Rate, etc.) for new product development that emphasize immediate returns. And everyone has job titles and job descriptions that describe their role in execution.

Why Execution and Innovation Need Different Tools, Cultures and Organizations
Talking to Bob I realized that at Acme Widgets (and in most large companies) the word “failure” was being used to describe two very different events:

  • failure in execution of a known product in known market
  • failure in searching for innovation when there are many unknowns

Therefore, in a large company, failure to meet a goal – revenue, product delivery, service, etc.– is a failure in execution of an individual and/or organization to perform to a known set of success criteria. In corporations the penalty for repeated failure on known tasks is being reassigned to other tasks or asked to leave the company.

As I sat with Bob and his innovation team, I realized that all of Acme’s new product innovation initiatives were being held to the same standard as those of existing products. Acme was approaching innovation and disruptive product ideas using the same processes, procedures, schedules, and incentives within the same organizational structure and culture as its existing businesses.

No wonder innovation at Acme had stalled.

The Ambidextrous Organization – Execution and Innovation
That companies should be simultaneously executing and innovating isn’t a new insight. For decades others have observed that companies needed to be ambidextrous. So while we did not lack the insight that execution and innovation need to be separate, we did lack the processes, tools, culture and organizational structures to implement it. Corporate innovation initiatives have spent decades looking at other corporate structures as models for innovation when in fact we should have been looking at startups for innovation models – and adapting and adopting them for corporate use.

That’s now changed. The strategy and structure for 21st corporate innovation will come from emulating the speed, urgency, agility and low-cost, rapid experimentation of startups.

What We Now Know about Corporate Innovation
In the last five years, as the need for continuous innovation in companies has become critical, Lean innovation methodologies (Lean LaunchPad/I-Corps) have also emerged. These methods allow rapid experimentation – at startup speed – with the same rigor and discipline as traditional execution processes. Adopted by the National Science Foundation and large companies, over 1000 teams have used the process, and the resulting commercialization success speaks for itself.

But running a Lean Startup inside an organization designed for execution is an exercise in futility. Working with large corporations we’ve learned that innovation groups need their own structure, culture, tools (Lean, Design Thinking, etc.), metrics (validated/invalidated hypotheses, Investment Readiness Level) and processes. And both organizations – execution and innovation – need to understand that the success of the company rests on how well they can cooperate.

Bob’s eyes lit up as he said, “Now I understand why innovation seemed beyond our reach. We were missing four ideas:

  1. Accepting failure and running at speed are part of an innovation culture.
  2. We need to separate out innovation risks from execution risks.
  3. There are now proven Lean innovation methodologies (Lean LaunchPad/I-Corps) that we can use off the shelf in building an innovation culture without inventing our own.
  4. We need to make sure that management no longer uses execution metrics to manage and judge our innovation teams.

Lessons Learned

  • In a startup “fear of failure” drives speed and urgency
  • In a large company “fear of failure” inhibits speed and risk
  • Innovation means experimentation in searching for a business model. Often failure is the norm not the exception.
  • Innovation processes and metrics need to be different from those of the execution organizations
  • There are proven Lean innovation methodologies that work in large existing companies

I’m on the Air – On Sirius XM Channel 111

Starting this Monday, March 9th 4-6pm Pacific Time I’ll be on the radio hosting the Bay Area Ventures program on Sirius XM radio Channel 111 – the Wharton Business Radio Channel.Untitled

Over this program I’ll be talking to entrepreneurs, financial experts and academic leaders in the tech and biotech industries. And if the past is prologue I guarantee you that this will be radio worth listening to.

On our first show, Monday March 9th 4-6pm Pacific Time join me, as I chat with Alexander Osterwalder – inventor of the Business Model Canvas, and Oren Jacob, ex-CTO of Pixar and now CEO of ToyTalk on Sirius XM Radio Channel 111.

Oren Jacob - CEO ToyTalk

Oren Jacob – CEO ToyTalk

Alex Osterwalder - Business Models

Alex Osterwalder – Business Models

On Monday’s show we’ll be talking about a range of entrepreneurship topics: what’s a Business Model Canvas, how to build startups efficiently, the 9 deadly sins of a startup, the life of a startup CEO, how large companies can innovate at startup speeds. But it won’t just be us talking; we’ll be taking your questions live and on the air by phone, email or Twitter.

On April 27th, on my next program, my guest will be Eric Ries the author of the Lean Startup. Future guests include Marc Pincus, founder of Zynga, and other interesting founders and investors.

Is there anyone you’d like to hear on the air on future shows? Any specific topics you’d like discussed? Leave me a comment.

Mark your calendar for 4-6pm Pacific Time on Sirius XM Radio Channel 111:

  • March 9th
  • April 27th
  • May 11th
  • June 29th
  • July 13th
  • Aug 24th in NY

Blowing up the Business Plan at U.C. Berkeley Haas Business School

During the Cold War with the Soviet Union, science and engineering at both Stanford and U.C. Berkeley were heavily funded to develop Cold War weapon systems. Stanford’s focus was Electronic Intelligence and those advanced microwave components and systems were useful in a variety of weapons systems. Starting in the 1950’s, Stanford’s engineering department became “outward facing” and developed a culture of spinouts and active faculty support and participation in the first wave of Silicon Valley startups.

At the same time Berkeley was also developing Cold War weapons systems. However its focus was nuclear weapons – not something you wanted to be spinning out. nuclearSo Berkeley started a half century history of “inward facing innovation” focused on the Lawrence Livermore nuclear weapons lab. (See the presentation here.)

Given its inward focus, Berkeley has always been the neglected sibling in Silicon Valley entrepreneurship. That has changed in the last few years.

Today the U.C. Berkeley Haas Business School is a leader in entrepreneurship education. It has replaced how to write a business plan with hands-on Lean Startup methods. It’s teaching the LaunchPad® and the I-Corps for the National Science Foundation and National Institutes of Health, as well as corporate entrepreneurship courses.haas logo

Here’s the story from Andre Marquis, Executive Director of Berkeley’s Lester Center for Entrepreneurship.

—–

When I came to U.C. Berkeley in 2010 to run the Lester Center for Entrepreneurship in the Haas School of Business we were teaching entrepreneurship the same way as when I was a student back in 1995. Our core MBA class used the seminal textbook New Venture Creation by Jeffrey Timmons of Babson College that was first published in 1977. The final deliverable for that class was a 30-page business plan. We had multiple business plan competitions. As I looked around at other schools, I saw pretty much the same landscape – business plan classes, business plan competitions and loosely coupled accelerators that focused primarily on mentoring.

Over my career as a serial entrepreneur I observed that since the late 1990s, no early-stage Silicon Valley investor had used business plans to screen investments. Even those who asked for them never read them. Traction and evidence from customers were what investors were looking for – even in “slow” sectors like healthcare and energy. There had been tectonic shifts in the startup world, but our business school curriculum had barely moved.

There was a big gap in our educational paradigm. To create great entrepreneurs, we had to give our students the experience of navigating the chaos and uncertainty of running a lean startup while providing the same kind of rigorous framework the business plan did in its day. The advantage of following New Venture Creation is that it had a deep pedagogical infrastructure that students took away after they left school. The disadvantage is that its methodology was based on the old waterfall model of product development and not the agile and lean methods that startups use today.

As I began my search to increase the relevance of our entrepreneurship curriculum with the same rigor as Timmons and New Venture Creation, I found the answer right here at Berkeley, in Steve Blank’s Lean LaunchPad class.

(Our founding Executive Director Jerry Engel, recently retired to become dean of faculty for the National Science Foundation I-Corps, had a tradition of incorporating leading practioners, like Steve. These ‘pracademics’ proved to be some of the biggest innovators in entrepreneurship education.)

Seeing Is Believing
The Lean LaunchPad class was completely different from a traditional entrepreneurship class. It taught lean theory (business model design, customer development and agile engineering) and practice.

Every week, each student team stood in front of the class and presented their business model hypotheses, what they had learned from talking to customers, demo’d their minimal viable products and had to explain what they were going to do next. Steve and the venture capitalists at the back of the room relentlessly peppered them with questions and pushed them to get out of the building and call on the real decision-makers instead of talking to people they already knew. Some teams stepped down from the podium proud that they had made real progress that week while others were chastised because they stuck to their comfort zone, were not doing the tough work required by entrepreneurs and on the road to failure.

I realized this class was teaching students exactly what it felt like to be an entrepreneur! Great entrepreneurs are on a search for the truth, no matter how wrong their initial conception is. Being an entrepreneur is about starting out with no idea whether you are working on the next big thing or something no one wants and certainly no one will pay for. It’s struggling to find the right path forward through chaos and uncertainty. Killing bad ideas quickly and moving on. Staring at the phone while mentally wrestling to pick it up to make that next cold call. It’s having investors tell you that you’re dead wrong and, perhaps with enough customer traction, showing them the path to a new future neither of you could see at the time.

And there it was. The Lean LaunchPad was unlike any class I’d ever seen.

As a Silicon Valley entrepreneur I had lived the lean approach, yet I had never seen it taught. Done informally as part of an accelerator, yes, but not with a framework based on a clear process and clear pedagogy. The Lean LaunchPad was teaching students concepts and a process that they took away from the class and could use again for their next startup. I realized I was looking at a paradigm shift in entrepreneurial education – away from the business plan-focused model to a Lean Startup model. (The irony is that once you’ve gone through the lean cycle, you have all the information that goes in a business plan: customers, sales strategy, product features, and financial metrics. It’s just that they are validated instead of made up.)

The Business Plan is Dead
Now, 4 years after I arrived at BerkeleyHaas, we don’t teach business plan writing in any of our entrepreneurship classes or in any of our dozens of programs and competitions. We use Customer Development and the Lean LaunchPad to train and accelerate teams U.C. Berkeley-wide.

We’ve gone global as well. In the past year alone, we’ve taught over 250 teams, over 1,000 entrepreneurs and their mentors in dozens of countries how to create scalable startups in domains from software and hardware to healthcare and energy.

Haas global footprint

Haas global footprint

The international teams watch the lectures online, get out of the building, present to us each week via WebEx and get the same brand of relentless and direct feedback their U.C. Berkeley peers got in Steve’s class. For example, our Intel Technology To Market Accelerator took 22 teams from 11 countries across 15 time zones, from northern Russia to southern Chile and from Saudi Arabia to the U.S. (Chicago) through the Lean LaunchPad process. Clearly, lean works globally.

And we’ve been part of the U.S. effort to use the Lean LaunchPad to accelerate commercialization for the country’s best research spinouts from the National Science Foundation and National Institutes of Health. We do this by running classes for the NSF Innovation Corps and The I-Corps at the NIH. And the same lean techniques work just as well in the corporate innovation programs we run such as the Intel Make It Wearable Challenge.

An important distinction is that these programs are accelerators. The teams in them start with an idea or product, meet with customers, build prototypes and search for a scalable business model. All declare their startup a “go” or “no go” at the end. They learn it’s all about building to scale, pivoting or declaring failure, and moving on using a hypothesis-driven search for the truth.

Even our venerable 15-year old business plan competition, once dubbed “bplan,” has transformed into LAUNCH, a multi-month accelerator with a rigorous process combining the Lean LaunchPad, agile product development and a focus on measurable Lean Analytics. Ironically, LAUNCH has turned out to be much more rigorous than the prior business plan competition because we immerse every entrepreneur and their mentors in conquering the chaos and uncertainty that is normal for startups. We expect them to come out with specific knowledge of their markets and business ecosystem, verified metrics, a product and a plan for moving forward based on interacting with their actual customers – not honing the teams for a beauty pageant-like pitch fest or making them produce a business plan that’s fundamentally speculative. As educators, we are having a deep impact on these entrepreneurs and their startups.

Lean LaunchPad Works Across Industries
I often hear the concern that the Lean LaunchPad only works for software. After 700 teams in robotics, materials, hardware, therapeutics, diagnostics, medical devices, and enterprise software, it’s clear that Lean Startup methods work across all industries. We’ve taught versions of the Lean LaunchPad for life sciences at UCSF and as part of the National Institutes of Health, for hardware-focused startups making wearable devices as part of the Intel Make It Wearable Challenge, for teams working on nanotechnology and in education (STEMKids and Build and Imagine). Two of our BerkeleyHaas Faculty, Jorge Calderon and Will Rosenzweig, created a Social Lean LaunchPad class that embraces the mission and stakeholders central to social ventures.

Whether it’s making iPhone apps or medical devices, every startup is looking for a repeatable and scalable business model. Focusing on finding customer needs, figuring out how they buy and how to scale up product delivery are universal.

Where We Are Going From Here
At U.C. Berkeley we’ve undergone a complete transformation in just four years. But the longer journey is to continue to build new lean-tools and classes separate from the 40 year-old, business plan-based tradition.

We continue to ask ourselves, “What can we do to get our students out of the classroom, in cross-functional teams, building for specific customers and having the experience of making hard decisions under conditions of uncertainty? What can we do to expand and deepen the rigor of the Lean Startup methodologies and fully elaborate our curriculum?”

At BerkeleyHaas we are sharing what we are learning (see below). By embracing lean, you can be assured you will be giving your students essential innovation skills they will use for the rest of their lives. You will see great startups focused on solving real customer problems emerge as well. This is an exciting journey and we are all right at the start.

Some resources for shifting the paradigm in your organization:

Lessons Learned

  • Early-stage investors don’t read business plans
  • We are in the middle of a shift in entrepreneurship education from teaching the waterfall model of startup development (enshrined in business plans) to teaching the lean startup model
  • The Lean LaunchPad process works across a wide range of domains – from science and engineering to healthcare, energy, government, the social sector and for corporate innovation
  • Customer Development works outside Silicon Valley. In fact, it works globally
  • The Lean LaunchPad is a business process that teaches entrepreneurs and innovators to make business-focused, evidence-based decisions under conditions of chaos and uncertainty. It’s a big idea

When Krave Jerky Showed up in Class with a $435,000 Check

I remind my students that I’m teaching them a methodology they can use the rest of their careers, not running an incubator.krave logo

Every once in awhile a team ignores my advice and builds a company worth hundreds of millions of dollars.

Hershey just bought Krave Jerky, a team in our 2011 Berkeley Lean LaunchPad class, for >$200 million.

—–

Jon Sebastiani and his team came into the 2011 Berkeley Lean LaunchPad class with several key observations:

  • Snack foods were a large ~$35 billion but the moribund food category was starving for innovation and modernization
  • Meat snacks were a $2.5 billion subcategory of snacks. So there was plenty of data that proved that Americans loved to snack and loved meat snacks.
  • There was an opportunity for a new company “Jerky 2.0.” in the snack food market
  • Jon believed his competition was the conventional “Meat Guys” (the existing beef jerky companies.)

Jon’s big vision was to build a company that disrupted the meat snacks business. He believed that he could use the “go-to-market” strategies of other food/beverage disrupters– companies like Pete’s Brewing Company, Boston Beer and Kettle Chips. These new entrants disrupted their food categories by offering high quality proprietary recipes, outsourcing their manufacturing, and using their cash and resources on sales and marketing to build distribution and a differentiated brand. And Krave Jerky was going to be packaged, priced and positioned to be an everyday high quality snack experience – a “Mass Premium” positioning.

Jerky 2.0

Get Out of the Building
Jon and the team came in with all the assurance of a startup that thought they knew what they were doing. Unlike most of the other teams in the class, Krave was already up and running. In fact, by the start of class they had ~$750K in revenue for 2011 – not quite Facebook but a nice small business. But Jon had much bigger ambitions.

(For the teaching team this was our first opportunity to see if the Lean Startup process and this Lean LaunchPad class would work not just for new startups, but also for existing businesses, a test we would face years later teaching established Life Science companies rather than startups for the National Institutes of Health. The question was: Could we get these companies to pivot and learn when they already thought they had an existing business model?)

Their sales had given them some real data on three potential distribution channels: direct to consumer, brick and mortar retail, retailers. But they had minimal understanding of their target customer segment(s), and in the relentlessly direct nature of the class, we let them know it.

Rising to the occasion Jon and the team got out of the building and went to the Sonoma County Fair and Wine and other food festivals, and spoke to 50 customers. They ran 10 in-store demos, which got them talking to 100s of more customers.

Each week the team presented their findings to the class and teaching team. Take a look through the slides below and see how their business model evolved with feedback from customers, channels and partners.

If you can’t see the slides click here

They refined their branding, got a better handle on who their customers were, and in a real-time example for the rest of the class – had a full blown crisis. Krave’s original outsourced manufacturing partner decided to raise their price – to a point that Krave’s business model was no longer viable. The team demonstrated awesome agility and resilience as they scrambled to get a new manufacturing partner while continuing to do customer discovery and validation – and run their company.

What Do You Mean You Only Spoke to 1 Customer?
One of the rules of the Lean LaunchPad class is: 10 customer interviews each week (in-person or video Skype) or you get told, “Sit down, you don’t get to present – presentations are only for the teams that did the work.”

In week 9 of the class, the Krave team stood up, looked the teaching team right in the eyes and said, “We only talked to 1 customer this week and we only have 1 slide to present. Let us just put up this one slide and then we’ll sit down.” It was a pretty gutsy request – so sure, put up your slide.

I was completely blown away with what was on the screen.Kraves Check

It was a check for $435,635 from a customer. And not just any customer; it was from one of the largest supermarket chains in the U.S. It was Krave’s first national stocking order.

Krave generated ~$35 million in net sales over the last 12 months.

Hershey plans to operate Krave as a standalone business within its Hershey North America division. Jon Sebastiani will continue to lead the business as President of Krave.

Congratulations to Jon Sebastiani for ignoring the rules!

Lessons Learned

  • The Lean LaunchPad class works for existing businesses as well as new startups
  • The only criteria is a willingness to accept that you may have to pivot – from the founders and investors

The Art of the Minimal Viable Product. 2 Minutes to Find Out Why

The Art of the Minimal Viable Product.

2 Minutes to Find Out Why

If you can’t see the video click here

I-Corps at the NIH: Evidence-based Translational Medicine

If you’ve received this post in an email the embedded videos and powerpoint are best viewed on www.steveblank.com

We have learned a remarkable process that allow us to be highly focused, and we have learned a tool of trade we can now repeat. This has been of tremendous value to us.

Andrew Norris, Principal Investigator BCN Biosciences

Over the last three years the National Science Foundation I-Corps has taught over 700 teams of scientists how to commercialize their technology and how to fail less, increasing their odds for commercial success.

To see if this same curriculum would work for therapeutics, diagnostics, medical devices and digital health, we taught 26 teams at UCSF a life science version of the NSF curriculum. 110 researchers and clinicians, and Principal Investigators got out of the lab and hospital, and talked to 2,355 customers. (Details here)

For the last 10 weeks 19 teams in therapeutics, diagnostics and medical devices from the National Institutes of Health (from four of the largest institutes; NCINHBLI, NINDS, and NCATS) have gone through the I-Corps at NIH.

87 researchers and clinicians spoke to 2,120 customers, tested 695 hypotheses and pivoted 215 times. Every team spoke to over 100 customers.

Three Big Questions
The NIH teams weren’t just teams with ideas, they were fully formed companies with CEO’s and Principal Investigators who already had received a $150,000 grant from the NIH. With that SBIR-Phase 1 funding the teams were trying to establish the technical merit, feasibility, and commercial potential of their technology. Many will apply for a Phase II grant of up to $1 million to continue their R&D efforts.

Going into the class we had three questions:

  1. Could companies who were already pursuing a business model be convinced to revisit their key commercialization hypotheses – and iterate and pivot if needed?
  2. Was getting the Principal Investigators and CEO out of the building more effective than the traditional NIH model of bringing in outside consultants to do commercialization planning?
  3. Would our style of being relentlessly direct with senior scientists, who hadn’t had their work questioned in this fashion since their PhD orals, work with the NIH teams?

Evidence-based Translational Medicine
We’ve learned that information from 100 customers is just at the edge of having sufficient data to validate/invalidate a company’s business model hypotheses. As for whether you can/should push scientists past their comfort zone, the evidence is clear – there is no other program that gets teams anywhere close to talking to 100 customers. The reason? For entrepreneurs to get out of the building at this speed and scale is an unnatural act. It’s hard, there are lots of other demands on their time, etc. But we push and cajole hard, (our phrase is we’re relentlessly direct,) knowing that while they might find it uncomfortable the first three days of the class, they come out thanking us.

The experience is demanding but time and again we have seen I-Corps teams transform their business assumptions. This direct interaction with potential users and customers is essential to commercialize science (whether to license the technology or launch a startup.) This process can’t be outsourced. These teams saved years and millions of dollars for themselves, the NIH and the U.S. taxpayer. Evidence is now in-hand that with I-Corps@NIH the NIH has the most effective program for commercializing science.

Lessons Learned Day
Every week of this 10 week class, teams present a summary of what they learned from their customers interviews. For the final presentation each team created a two minute video about their 10-week journey and a 8-minute PowerPoint presentation to tell us where they started, what they learned, how they learned it, and where they’re going. This “Lessons Learned” presentation is much different than a traditional demo day. It gives us a sense of the learning, velocity and trajectory of the teams, rather than a demo day showing us how smart they are at a single point in time.

BCN Biosciences
This video from team BCN Biosciences describes what the intensity, urgency, velocity and trajectory of an I-Corps team felt like. Like a startup it’s relentless.

BCN is developing a drug that increases anti-cancer effect of radiation in lung cancer (and/or reduces normal tissue damage by at least 40%). They were certain their customers were Radiation Oncologists, that MOA data was needed, that they needed to have Phase 1 trial data to license their product, and needed >$5 million and 6 years. After 10 weeks and 100 interviews, they learned that these hypotheses were wrong.

If you can’t see the BCN Biosciences video click here

The I-Corps experience helped the BCN Bioscience team develop an entirely new set set of business model hypotheses – this time validated by customers and partners. The “money slides” for BCN Biosciences are slides 22 and 23.

If you can’t see the BCN Biosciences presentation click here

You Can’t Outsource Customer Discovery
What we hear time and again from the Principal Investigators is “I never would have known this” or “I wouldn’t have understood it if I hadn’t heard it myself.” Up until now the NIH model of commercialization treated a Principal Investigator as someone who can’t be bothered to get out of the building (let alone insist that it’s part of their job in commercialization.) In the 21st century using proxies to get out of the building is like using barbers as surgeons.

Clinacuity
While the Clinacuity video sounds like an ad for customer discovery, listen to what they said then look at their slides. This team really learned outside the building.


If you can’t see the Clinacuity video click here

Clinacuity’s technology automatically extracts data in real-time from clinical notes, (the narrative text documents in a Electronic Health Record,) and provides a summary in real time. Their diagrams of the healthcare customer segment in slides 15-18 were outstanding.

If you can’t see the Clinacuity presentation click here

GigaGen
The GigaGen team – making recombinant gamma globulin – holds the record for customer discovery – 163 customer interviews on multiple continents.

If you can’t see the GigaGen video click here

GigaGen’s learning on customer value proposition and who were the real stakeholders was a revelation. Their next-to-last slide on Activities, Resouces and Partners put the pieces together.

If you can’t see the GigaGen presentation click here

Affinity Therapeutics
Affinity came into class with a drug coated Arterial Venous Graft – graft narrowing is a big problem.

One of things we tell all the teams is that we’re not going to critique their clinical or biological hypotheses. Yet we know that by getting out of the building their interaction with customers might do just that. That’s what happened to Affinity.

If you can’t see the Affinity video click here

Affinity was a great example of a team that pivoted their MVP. They realized they might have a completely new product – Vascular wraps that can reduce graft infection.  See slides 17-23.

If you can’t see the Affinity presentation click here

Haro
Haro is making a drug for the treatment of high risk neuroblastoma, the most common extracranial cancer in infancy and childhood. On day 1 of the class I told the team, “Your presentation is different from the others – and not in a good way.”  That’s not how I described them in the final presentation.

If you can’t see the Haro video click here

After 120 interviews the Haro found that there are oncology organizations (NCI-funded clinical development partners) that will take Haro’s compound and develop it at their own expense and take it all the way into the clinic. This will save Haro tens of millions of dollars in development cost.  See slides 12 and 13.

If you can’t see the Haro presentation click here

Cardiax
Caridax is developing a neural stimulator to treat atrial fibrillation. Their video points out some of the common pitfalls in customer discovery. Great summary from Mark Bates, the Principal Investigator: “You don’t know what you don’t know. Scientific discovery is different than innovation. You as a prospective entrepreneur need this type of systematic vetting and analysis to know the difference.”

If you can’t see the Cardiax video click here

After 80 interviews they realized they were jumping to conclusions and imparting their bias into the process. Take a look at slides 8-11 and see their course correction.

If you can’t see the Cardiax presentation click here

The other 15 presentations were equally impressive. Each and every team stood up and delivered. And in ways that surprised themselves.

The Lean Startup approach (hypotheses testing outside the building,) was the first time clinicians and researchers understood that talking to customers didn’t require sales, marketing or an MBA – that they themselves could do a pretty good first pass. I-Corps at NIH just gave us more evidence that’s true.

The team videos and slides are on SlideShare here.

A Team Effort
This blog post may make it sound like there was no one else in the room but me and the teams. But nothing could be farther from the truth. The I-Corps@NIH teaching team was led by Edmund Pendleton. Allan May/Jonathan Fay taught medical devices, John Blaho/Bob Storey taught diagnostics and Karl Handelsman/Keith McGreggor taught therapeutics. Andre Marquis, Frank Rimalovski and Dean Chang provided additional expertise. Brandy Nagel was our tireless teaching assistant. Jerry Engel is the NSF I-Corps faculty director.

Special thanks to Paul Yock of Stanford Biodesign and Alexander Osterwalder for flying across the country/world to be part of the teaching team.

I created the I-Corps/Lean LaunchPad® syllabus/curriculum, and with guidance from Allan May, Karl Handelsman Abhas Gupta and Todd Morrill adapted it for Life Sciences/Health Care/Digital Health. The team from VentureWell provided the logistical support. The I-Corps program is run by the National Science Foundation (Babu Dasgupta, Don Millard and Anita LaSalle.) And of course none of this would be possible without the tremendous and enthusiastic support and encouragement of Michael Weingarten the director of the NIH/NCI SBIR program and his team.

Lessons Learned

  • The I-Corps/Lean LaunchPad curriculum works for therapeutics, diagnostics and device teams
  • Talking to 100 customers not only affected teams’ commercial hypotheses but also their biological and clinical assumptions
  • These teams saved years and millions of dollars for themselves, the NIH and the U.S. taxpayer
  • Evidence is now in-hand that the NIH has the most effective program for commercializing science
  • In the 21st century using proxies to get out of the building is like using barbers as surgeons
Follow

Get every new post delivered to your Inbox.

Join 176,489 other followers